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Abstract
Objective. Phase-amplitude coupling (PAC), the coupling of the amplitude of a faster brain rhythm
to the phase of a slower brain rhythm, plays a significant role in brain activity and has been
implicated in various neurological disorders. For example, in Parkinson’s disease, PAC between the
beta (13–30 Hz) and gamma (30–100 Hz) rhythms in the motor cortex is exaggerated, while in
Alzheimer’s disease, PAC between the theta (4–8 Hz) and gamma rhythms is diminished.
Modulating PAC (i.e. reducing or enhancing PAC) using brain stimulation could therefore open
new therapeutic avenues. However, while it has been previously reported that phase-locked
stimulation can increase PAC, it is unclear what the optimal stimulation strategy to modulate PAC
might be. Here, we provide a theoretical framework to narrow down the experimental
optimisation of stimulation aimed at modulating PAC, which would otherwise rely on trial and
error. Approach.We make analytical predictions using a Stuart–Landau model, and confirm these
predictions in a more realistic model of coupled neural populations.Main results. Our framework
specifies the critical Fourier coefficients of the stimulation waveform which should be tuned to
optimally modulate PAC. Depending on the characteristics of the amplitude response curve of the
fast population, these components may include the slow frequency, the fast frequency,
combinations of these, as well as their harmonics. We also show that the optimal balance of energy
between these Fourier components depends on the relative strength of the endogenous slow and
fast rhythms, and that the alignment of fast components with the fast rhythm should change
throughout the slow cycle. Furthermore, we identify the conditions requiring to phase-lock
stimulation to the fast and/or slow rhythms. Significance. Together, our theoretical framework lays
the foundation for guiding the development of innovative and more effective brain stimulation
aimed at modulating PAC for therapeutic benefit.

1. Introduction

Phase-amplitude coupling (PAC), a type of cross-
frequency coupling where the amplitude of faster
brain oscillations is coupled to the phase of slower
brain oscillations, is widespread across species and
brain regions. Most notably, PAC was shown to be
implicated in memory and learning, in particular
through coupling of the amplitude of the gamma
rhythm (30–100Hz) to the phase of the theta rhythm
(4–8Hz) in the hippocampus [1–6]. Beyondmemory
processes, PAC is for example modulated during

movement and speech [7], visual attention [8], audit-
ory processing [9], complex cognitive function [10],
as well as during development [11].

PAC was also found to be abnormal in vari-
ous neurological disorders—see [12] for a review.
In Parkinson’s disease (PD), coupling between the
beta phase (13–30 Hz) and gamma amplitude in the
motor cortex is exaggerated compared to patients
with dystonia and patients with epilepsy, both at rest
and during movement [13]. Elevated PAC was repor-
ted in patients with PD off dopaminergic medica-
tion compared to patients on medication, as well as
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compared to humans without a movement disorder
[14]. This increased PAC is reduced by deep brain
stimulation (DBS) [15]. Similarly, alpha (8–12 Hz)
gamma PAC is exaggerated in the sensorimotor cor-
tex of patients with essential tremor [16]. As expec-
ted from its involvement in memory, theta-gamma
PAC is impacted in Alzheimer’s disease (AD). Lower
theta-gamma PAC than controls was found in AD
rodent models [17, 18], with alterations appearing
before significant accumulation of amyloid beta in
some animals [19]. In humans, theta-gamma PAC
was lower in patients with mild cognitive impairment
compared to healthy age-matched participants, lower
still in patients with AD [20], and correlatedwith cog-
nitive and memory performance [20, 21]. PAC was
also reported to be elevated during epileptic seizures
[22]. Furthermore, PACwas suggested as a biomarker
for brain-computer interface-mediated motor recov-
ery in chronic stroke [23], and for rehabilitation of
speech discrimination in cochlear implant users [24].

Given changes in PAC from healthy levels in
neurological disorders, in some cases correlated with
symptoms or recovery, restoring healthy PAC levels
is a promising target for neuromodulation therapies.
However, how to stimulate to enhance or decrease
PAC levels has received very little attention to date.
A notable exception is the work by Salimpour and
colleagues, which showed that phase-locking motor
cortical electrical stimulation to the peak of the
beta rhythm increased beta-gamma PAC in humans
compared to baseline, and compared to stimula-
tion phase-locked to the trough of the beta rhythm
[25]. Similarly, phase-locking hippocampal transcra-
nial ultrasound stimulation to the peak of the theta
rhythm increased theta-gamma PAC in rats [26].
Nevertheless, it is unclear what the optimal stimu-
lation strategy to enhance or decrease PAC might
be. Here, we develop a theoretical framework to
address this question using the analytically tractable
Stuart–Landau (SL) model as well as a more biologic-
ally realistic neural mass model, the Wilson–Cowan
(WC) model. While we focus on PAC-enhancing
stimulation (which could be of interest for example
in patients with AD), the same framework can be
applied to stimulation aimed at reducing PAC. Our
framework is directly applicable to neuromodulation
modalities where the Fourier coefficients of the stim-
ulation waveform can be tuned, such as transcranial
alternating current stimulation (tACS). For modalit-
ies that can only generate square pulses (e.g. DBS),
the optimal waveforms predicted from our theor-
etical framework can be approximated by pulsatile
waveforms.

2. Results

We develop a theory of optimal PAC-enhancing
stimulation using the SL model, which offers the

possibility of analytical insights. In particular, we
build on two keymechanisms contributing to increas-
ing PAC, namely stimulation at the slow frequency,
and stimulation with a modulated component at the
fast frequency. We show that whether these mech-
anisms can be leveraged depends on characteristics
of the fast population’s response to stimulation. We
proceed to verify elements of the theory in a neural
mass model, the WC model. We finish by consider-
ing practical questions, in particular the balance of the
Fourier coefficients of the stimulation waveform as a
function of the strength of the endogenous slow and
fast rhythms, the necessity (or lack thereof) of phase-
locking stimulation to the fast and/or slow rhythm,
and how to approximate the optimal waveforms
with pulsatile waveforms. Flowcharts that could guide
experimentalists in designing optimal-PAC modulat-
ing stimulation are presented in figure 10.

2.1. Developing optimal PAC-enhancing
stimulation in the Stuart–Landaumodel
The SL model is arguably the simplest phase-
amplitude model used in neuroscience [27–30], and
is therefore ideally suited to obtain analytical insights
on PAC-enhancing stimulation. The model repres-
ents the canonical form of a Hopf bifurcation, and
can therefore operate in the fixed-point or limit-cycle
regime. We are considering a SL population operat-
ing at the fast frequency of interest with order para-
meter zf = ρfeiθf (oscillation amplitude ρf and oscil-
lation phase θf ) evolving according to

żf =
(
δ+ iωf − |zf|2

)
zf,

where ωf = 2π ff is the angular frequency of the fast
population, and δ a bifurcation parameter. When
δ> 0, the fast population is in the limit-cycle regime
and generates intrinsic oscillations of amplitude con-
verging to

√
δ. When δ ! 0, the fast population is in

a quiescent state (fixed-point regime).
We assume that neither stimulation nor the fast

rhythm significantly affects the slow rhythm contrib-
uting to PAC, and we model the slow rhythm as an
input to the fast population. In the case of hippocam-
pal theta-gamma PAC, the slow input can represent
the theta input frompacemaker neurons in themedial
septum for example, believed to be the main con-
tributor to hippocampal theta [31–33]. We present
the limitations of this approach in the Discussion.
We further assume that the slow input of strength
ks and angular frequency ωs = 2π fs is coupled to the
fast population through its mean-field (see figure 1),
thereby affecting the amplitude (but not the phase)
of the fast oscillations. As shown by Quin and col-
leagues, such a slow input can generate PAC [27] in
the SL model. Indeed, since

żf =
(
δ+ iωf − |zf|2

)
zf + zfks cosωst
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Figure 1. Sketch of the Stuart–Landau model with stimulation. Intrinsic PAC is generated by a slow input (shown in dark blue)
interacting with a fast Stuart–Landau population (represented in green). An example of the output of the fast population (real
part of the fast-population order parameter) displaying PAC in the absence of stimulation is shown in the left panel. The
stimulation u(t) (in black) acts on the fast population via a stimulation coupling function f(zf), where zf is the order parameter of
the fast population with oscillation amplitude ρf and oscillation phase θf .

can be re-written as

żf =
(
δ+ ks cosωst+ iωf − |zf|2

)
zf,

the parameter controlling the amplitude of the
fast oscillations becomes δPAC = δ+ ks cosωst. This
means that the amplitude of the fast oscillations is
controlled by the phase of the slow input.

In the next sections, we will optimise the stimula-
tion waveform to maximally increase PAC for a given
stimulation energy budget. We will consider a stimu-
lation input u(t) provided to the fast SL population
receiving a slow input. The stimulation is provided
to the population through the stimulation coupling
function f (its connection with experimental meas-
ures is detailed below). The evolution of the order
parameter of the fast SL population is given by

żf =
(
δ+ ks cosωst+ iωf − |zf|2

)
zf + f

(
zf
)
u(t) . (1)

Inwhat follows, we expand u(t) as a truncated Fourier
Series

u(t) =
Nu∑

n=−Nu
n ̸=0

une
niωst =

Nu∑

n=1

[an cos(nωst)+ bn sin(nωst)] ,

(2)

with complex coefficients un, or equivalently real
coefficients an and bn, and with truncation order Nu.
To enforce charge balance of the stimulus (a require-
ment for brain stimulation to avoid tissue damage),
the zeroth-order coefficient is zero.

We will show in the next sections that the way
stimulation is coupled to the fast population, and
in particular the amplitude response curve (ARC) of
the fast population, determines which Fourier coef-
ficients contribute to modulating PAC. The stim-
ulation coupling function is directly related to the
ARC and the phase response curve (PRC) of the
fast population. Here, the ARC describes the instant-
aneous change in amplitude of the collective activ-
ity of a neural population (e.g. measured in the

local field potential [34, 35]) due to stimulation.
The ARC is a function of the state of the neural
population, e.g. the phase and/or amplitude of the
collective oscillation when stimulation is received.
Similarly, we take the PRC to refer to the instant-
aneous change in phase of the collective oscillation
due to stimulation, as a function of the state of the
neural population.Note that in some studies, the PRC
refers instead to the response of individual neurons
(e.g. [36–38]). This is in contrast with this study,
where we consider changes on the population level.
Given these definitions, we have ARC(z)u(t) = ρ̇stim
and PRC(z)u(t) = θ̇stim, where ρ̇stim and θ̇stim are the
instantaneous changes in amplitude and phase of the
neural population due to stimulation, respectively,
and z is the order parameter of the SL model. Using
the product rule on the definition of the order para-
meter, we have ż= ρ̇eiθ + iθ̇ρeiθ. Without loss of gen-
erality, the instantaneous change in z due to stim-
ulation at time t can therefore be written as żstim =[
ARC(z)eiθ + iPRC(z)z

]
u(t). Since żstim = f(zf)u(t),

we can identify the stimulation coupling function as

f
(
zf
)
= ARC

(
zf
)
eiθf + iPRC

(
zf
)
zf. (3)

Wewill show that systemswith different ARCs require
different stimulation waveforms to optimally modu-
late PAC. Examples of ARCs with their corresponding
optimal PAC-enhancing waveforms are given for the
SL model in figure 2, and later for the WC model in
figure 9.

Before dealing with arbitrary stimulation coup-
ling functions (i.e. arbitrary ARCs and PRCs), we
consider two foundational cases to uncover the two
mechanisms of action contributing to PAC enhance-
ment in the general case. We will show below that
in the first foundational case where the amplitude
response of the fast population does not depend on its
phase, the optimal stimulation is at the frequency of
the slow rhythm (figure 2(A)). In the second found-
ational case where the amplitude response of the
fast population depends on its phase but has zero

3
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Figure 2. PAC-enhancing mechanisms in the Stuart–Landau model depend on the amplitude response of the fast population.
Panel (A) corresponds to foundational case one, where the amplitude response of the fast population does not depend on its
phase ((A1), shown for ρf = 3). Sinusoidal stimulation (A3) therefore enhances the amplitude of the fast population (A2) when
the stimulation waveform is positive (green highlights), and suppresses the amplitude of the fast population when it is negative
(red highlights). Panel (B) corresponds to foundational case two, where the amplitude response of the fast population depends on
its phase but has zero mean (B1). Where the fast-oscillation amplitude (B2) should be increased, the optimal stimulation
waveform ((B3), taken from figure 4(C)) has fast-frequency components aligned with the peak of the fast rhythm (green dashes).
Conversely, where the fast-oscillation amplitude should be decreased, the optimal stimulation waveform has fast-frequency
components anti-phase-aligned with the peak of the fast rhythm. Panel (C) corresponds to a general case where the amplitude
response of the fast population does depend on its phase and has a non-zero mean (highlighted in light green in (C1)). The
optimal stimulation waveform (taken from figure 5(C)) combines mechanisms of PAC-enhancement from panels (A) and (B), as
shown in panels (C2)–(C5). The dark red line in (C3) represents a moving average of the stimulation waveform (sliding window
corresponding approximately to two fast-population cycles.).

mean, the optimal stimulation is at the fast frequency,
with fast frequency components modulated by the
slow frequency (figure 2(B)). The general case com-
bines both strategies (figure 2(C)). In each case, we
derive theoretical results and test them using numer-
ical optimisation.

2.1.1. Foundational case one: stimulation is coupled
through the mean-field
In this first foundational case where stimulation is
coupled to the fast population through its mean field,
i.e. f(zf) = zf, the optimal PAC-enhancing waveform
can be approximated analytically. Using equation (3),
we note that this type of stimulation coupling
through the mean-field of the fast population is equi-
valent to ARC= ρf and PRC= 0. The ARC is there-
fore positive, with no dependence on the fast popula-
tion phase. We have

żf =
(
δ+ ks cosωst+ u(t)+ iωf − |zf|2

)
zf, (4)

and the parameter controlling the amplitude
of the fast oscillations is therefore given by
δPAC = δ+ ks cosωst+ u(t).

2.1.1.1. Approximate analytical solution
To analytically quantify PAC in the system described
by equation (4), we modify a PAC measure called
the mean vector length (MVL) [39, 40]. The MVL
is recommended for high signal-to-noise ratio [40],
which is the case in this modelling approach. We
define our modified MVL measure as

Γ=
1

Ts

∣∣∣∣∣

ˆ Ts

0
ρf (t)

2 eiωstdt

∣∣∣∣∣ , (5)

where Ts = 2π/ωs is the period of the slow rhythm,
ρf is the amplitude of the fast oscillations, and ωst
is the phase of the slow input. Our PAC measure Γ
is the direct translation of the MVL (as defined in
[40]) to continuous time over one period, with the
exception that the amplitude of the fast oscillations is
replaced by ρf(t)2 (i.e. power) for analytical conveni-
ence (as will become apparent below). As in the ori-
ginal definition, when the amplitude of the fast oscil-
lation is high for a consistent range of phases of the
slow oscillation, the magnitude of the resulting vec-
tor will be large and PAC will be detected. Assuming
the square of the envelope of the fast oscillations can
be expressed as a Fourier series, our PAC measure Γ

4
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can also be interpreted as the modulus of the com-
plex Fourier coefficient of ρ2f at the slow frequency.
The modified PAC measure Γ therefore captures the
strength of themodulation of ρf at the slow frequency
ωs.

Assuming relaxation to the limit cycle arising
from equation (4) is fast enough, we have ρf(t)≈√
δPAC(t) for δPAC(t)> 0, which allows us to com-

pute Γ (this assumption can be relaxed using a
semi-analytical approach described in supplementary
material section A). We therefore have

Γ=
2π

ωs

∣∣∣∣∣

ˆ 2π
ωs

0

[
δ+ ks cosωst+

Nu∑

n=1

{an cos(nωst)

+bn sin(nωst)}
]
eiωstdt

∣∣∣∣∣.

The only non-zero terms correspond to products of
sines or cosines at the same frequency, which yields

Γ=
1

2

[
(a1 + ks)

2 + b21

] 1
2
. (6)

Remarkably, the PAC measure Γ only depends on the
first harmonic of the stimulation. For a given stim-
ulation energy Ξ, we can find the values of a1 and b1
thatmaximiseΓ using themethod of Lagrangemulti-
pliers. The energy constraint is a21 + b21 = 2Ξ, and the
corresponding Lagrangian function reads

L(a1,b1,λ) =
1
2

[
(a1 + ks)

2 + b21
] 1

2
+λ

(
a21 + b21 − 2Ξ

)
.

Setting its derivatives with respect to a1, b1, and λ to 0
leads to a1 =

√
2Ξ and b1 = 0, i.e.

u(t) =
√
2Ξcos(ωst) . (7)

The optimal stimulation strategy therefore consists
in providing sinusoidal stimulation at the slow fre-
quency, with its peak aligned to the peak of the slow
rhythm. This optimal waveformmakes intuitive sense
since the ARC of the fast population is positive and
does not depend on the phase of the fast population.
Sinusoidal stimulation therefore enhances the amp-
litude of the fast population when the stimulation
waveform is positive, and suppresses the amplitude of
the fast population when the stimulation waveform is
negative as illustrated in figure 2(A).

2.1.1.2. Verification using numerical optimisation
We verify using numerical optimisation that the
waveform given by equation (7) closely approxim-
ates the optimal PAC-enhancing waveform. To this
end, we optimise the Fourier coefficients of u(t)
up to Nu = 5 to maximise the MVL (obtained as
equation (12), see section A.1 in the appendix) while
constraining the energy of u(t) to Ξ. Methodological
details of the optimisation process can be found in
section A.2.

The best-ranked stimulation waveform obtained
from numerical optimisation is a close approxima-
tion of the sinusoidal waveform given by equation (7),
as shown in figure 3 (see panel (I), and compare
panels (D) and (G)). These results are consistent
across the top-50 optimisations (figure 3(H)). Note
that similar results are obtained when maximising
the MVL (figure 3) or a discrete approximation of
Γ, i.e. measures based on ρf or ρ2f , respectively. We
also perturb each Fourier coefficient in turn by adding
the perturbation

√
Ξ/10, where Ξ is the waveform

energy before perturbation. This analysis confirms
the dominant impact of the first Fourier compon-
ent of the stimulation waveform on PAC. This is true
both when perturbing PAC-enhancing waveforms
(figure 3(J)) and random waveforms (figure 3(K)).
Methodological details for this analysis can be found
in section A.3.

2.1.2. Foundational case two: stimulation acts through
a direct coupling
We next consider a second foundational case where
stimulation acts through f(zf) = 1, which we call ‘dir-
ect’ coupling. With the activity of the fast population
modelled as ℜ(zf) (where ℜ(.) denotes the real part),
this case represents stimulation directly increasing the
firing rate of the fast population. Using equation (3),
f(zf) = 1 corresponds to ARC= cosθf and PRC=
− sinθf/ρf (for ρf > 0). From equation (1) with direct
coupling, the time evolutions of ρf and θf are given by

ρ̇f =−ρ3f + [δ+ ks cos(ωst)]ρf + cos
(
θf
)
u(t) ,

θ̇f = ωf −
sin

(
θf
)

ρf
u(t) , (8)

for ρf > 0.

2.1.2.1. Theoretical predictions
While an analytical solution is out of reach, we can
determine which Fourier coefficients of the stimula-
tion waveform should be considered to enhance PAC.
To study the effect of stimulation on ρf , we approx-
imate θf by

θf ≈ ωft+ϕu ≈ rωst+ϕu, (9)

where r is the closest integer to ωf/ωs, and ϕu is
a constant phase (the subscript u denotes a poten-
tial dependence on the stimulation waveform). This
approximation is justified if the stimulation amp-
litude is small (in which case deviations of θ̇f from ωf

would be small), and ωf ≫ ωs, which is often the case
in the brain (e.g theta-gamma coupling). The approx-
imation θf ≈ rωst+ϕu is also justified for larger stim-
ulation amplitudes leading to r : 1 entrainment. We
therefore have approximately

ρ̇f =−ρ3f + [δ+ ks cos(ωst)]ρf + cos(rωst+ϕu)u(t) .
(10)

5
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Figure 3. Comparison between optimal PAC-enhancing waveforms predicted by theory and by numerical
optimisation—foundational case one (mean-field coupled stimulation) in the Stuart–Landau model. The model output in the
absence of stimulation is shown in panel (A). The model output when receiving optimal PAC-enhancing stimulation is shown in
panels (B) (stimulation waveform predicted by theory) and (E) (stimulation waveform obtained though numerical optimisation).
The corresponding optimal PAC-enhancing stimulation waveforms are shown in panels (C) and (F), respectively, and are overlaid
for comparison in panel (I). Their Fourier coefficients are shown in panels (D) and (G), respectively. Panel (H) represents the
energy of PAC-enhancing waveforms obtained from numerical optimisation for all Fourier coefficient orders (vertical axis), when
averaging the x-best optimisation results (x being the horizontal axis value). The absolute change in MVL when increasing the
energy of a given stimulation Fourier coefficient is provided in panels (J) (when starting from PAC-enhancing waveforms
obtained from the numerical optimisation process), and (K) (when starting from random waveforms). Error bars (too small to
see here) represent the standard error of the mean. The Fourier coefficients predicted to be key contributors to PAC levels by
theory are highlighted by red rectangles in panels (H), (J), and (K). MVL for the stimulation waveform predicted by theory is
0.335, MVL for the stimulation waveform obtained though numerical optimisation is 0.337, MVL in the absence of stimulation is
0.079 (∆ff = 10 Hz). In all cases, waveform energy is fixed at Ξ = 50. The parameters of the SL model used are δ= 15, ks = 3,
ff = 40 Hz, and fs = 6 Hz.

Although an exact solution has recently been
found for this type of differential equations (Abel’s
equation of the first kind) [41], it cannot be expressed
directly as a function of the Fourier coefficients of the
stimulation. Instead, we can gain insight by noting
that in the steady-state, solutions with PAC will be
periodic with period 2π/ωs, and thus can be approx-
imated as truncated Fourier series. Since most of the
PAC strength is captured by the first harmonic of ρf ,
we only consider its zeroth and first order compon-
ents parametrised by ρ0, ρ1, and θ1 such that ρf(t) =

ρ0 + 2ρ1 cos(ωst+ θ1). We show in section A.4 in
the appendix that equation (10) translates to three
equations in ρ0, ρ1, and θ1 (equations (15)–(17)).

While these equations cannot be solved easily,
they demonstrate that the zeroth and first harmonic
of ρ (whichwill determine PAC strength) only depend
on the Fourier coefficients of the stimulation of order
r, r− 1, r+ 1 (recall that r is the closest integer
to ωf/ωs). Since the base frequency of u(t) is ωs,
these Fourier coefficients correspond to frequencies ff,
and ff ± fs. The small number of Fourier coefficients

6
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involved significantly simplifies the task of finding an
optimal stimulation to increase PAC, and also high-
lights that how stimulation couples to the neural cir-
cuit of interest has a large influence on the optimal
stimulation. The optimal stimulation here is very dif-
ferent from the mean-coupling case where stimula-
tion at ωs is optimal, i.e. only u1 is non-zero. Note
the theory predicts that no Fourier coefficient other
than the coefficients of order r, r− 1, r+ 1 plays a key
role in enhancing PAC, but the coefficients of order r,
r− 1, r+ 1 need not all have a significant impact on
PAC.

2.1.2.2. Verification using numerical optimisation
We verify using numerical optimisation that the key
stimulation waveform Fourier coefficients to optim-
ally enhance PAC (for direct coupling) are limited to
(possibly a subset of) coefficients of order r, r− 1, and
r+ 1 as predicted by theory. To this end, we optim-
ise either the Fourier coefficients of u(t) predicted
by theory, or all Fourier coefficients up to Nu = 10.
In both cases, the objective is to maximise the MVL
(obtained as equation (12), see section A.1 in the
appendix) while constraining the energy of u(t) to Ξ.
As before, methodological details of the optimisation
process can be found in section A.2.

The results of numerical optimisation support
theoretical predictions. The best-ranked stimulation
waveforms obtained from both numerical optim-
isations show close similarities (figure 4(J)), and
the resulting PAC levels are similar (with a slight
advantage when optimising Fourier coefficients pre-
dicted by theory). Additionally, the best-rankedwave-
form obtained when optimising all coefficients con-
centrates its energy in the Fourier coefficients pre-
dicted by theory (highlighted by a red rectangle in
figure 4(H)). This is consistent across the top-50
local optimisations (figure 4(I)). Moreover, perturb-
ing individual Fourier coefficients in turn confirms
the dominant impact of the stimulation waveform
Fourier components of order r, r− 1, and r+ 1.
This is true both when perturbing PAC-enhancing
waveforms (figure 4(K)) and random waveforms
(figure 4(L)). As before, the perturbation size is√
Ξ/10 and methodological details for this analysis

can be found in section A.3. These numerical res-
ults were obtained for ωf/ωs = 7, and we also verify
that our theoretical predictions hold true for non-
integer values of ωf/ωs (see figure S.2 in supplement-
ary material).

This second foundational example illustrates a
key mechanism of action of PAC-enhancing stimu-
lation when the amplitude response of the fast pop-
ulation depends on its phase and has zero mean.
In this case, modulating the amplitude of the fast

population necessarily requires fast-frequency oscil-
lations in the stimulation waveform. The optimal
waveform obtained from numerical optimisation in
figure 2(B) demonstrate that, if the ARC is maximum
and positive at θf = 0, the fast-frequency oscillations
in the stimulation waveform should phase-align with
the oscillations of the fast population in the part of the
slow-frequency cycle where the fast-oscillation amp-
litude should be increased (see green dashed lines
in figure 2(B)). Conversely, if the ARC is minimum
and negative at θf = π for example, the fast-frequency
oscillations in the stimulation waveform should anti-
phase-align with the oscillations of the fast popula-
tion in the part of the slow-frequency cycle where the
fast-oscillation amplitude should be decreased (see
red-dashed lines in figure 2(B)). While the theoret-
ical analysis presented above does not describe how
the fast-frequency oscillations in the optimal wave-
form should be arranged, the definition of the ARC
requires the phase alignment between the stimula-
tion’s fast components and the oscillations of the
fast population to change throughout the slow cycle.
Indeed, if this were not the case, the effect of stimu-
lation on the amplitude of the fast population would
be the same throughout the slow cycle as the peaks of
stimulation at the fast frequency would consistently
occur around the same phase of the fast population’s
oscillation. As detailed above, the optimal waveform
obtained from numerical optimisation confirms that
the ARC of the fast population dictates how phase
alignment between the stimulation’s fast compon-
ents and the fast rhythm should change throughout
the slow cycle to optimally enhance PAC. Specifically,
stimulation energy should be concentrated close to
the phase corresponding to maximum amplifica-
tion in the ARC where the fast population’s oscil-
lations should be strengthened, and close to phase
corresponding to maximum suppression in the ARC
where the fast population’s oscillations should be
weakened.

2.1.3. Stimulation acts through a general coupling
In this section, we consider that stimulation acts
through a general coupling. In general, the ARCof the
fast population will combine features of the found-
ational cases investigated in the previous sections,
i.e. non-zero mean and phase dependence. We
assume f(zf) = ARC(θf,ρf)eiθf + iPRC(θf,ρf)zf where
ARC(θf,ρf) is a separable function of θf and ρf . This
is for instance the case for the mean-field of a pop-
ulation of neurons represented by phase oscillators
[42]. Since the ARC of the fast population is also a
periodic function of θf , it can be approximated as

ARC(θf,ρf)≈ g(ρf)
∑Na

n=−Na
αneniθf .
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Figure 4. Comparison between best PAC-enhancing waveforms predicted by theory and by numerical
optimisation—foundational case two (direct stimulation coupling) in the Stuart–Landau model. The model output in the
absence of stimulation is shown in panel (A). The model output when receiving PAC-enhancing stimulation is shown in panels
(B) (best stimulation waveform obtained when optimising only Fourier coefficients predicted by theory) and (F) (best
stimulation waveform obtained when optimising all Fourier coefficients). The corresponding best PAC-enhancing stimulation
waveforms are shown in panels (C) and (G), respectively, and are overlaid for comparison in panel (J) (aligned to maximise their
cross-correlation). Their Fourier coefficients are shown in panels (D) and (H), respectively. The energy of PAC-enhancing
waveforms obtained from numerical optimisation for all Fourier coefficient orders (vertical axis) when averaging the x-best
optimisation results (x being the horizontal axis value) is represented in panels (E) (only Fourier coefficients predicted by theory
were optimised) and (I) (all Fourier coefficients were optimised). The absolute change in MVL when increasing the energy of a
given stimulation Fourier coefficient is provided in panels (K) (when starting from PAC-enhancing waveforms obtained from the
numerical optimisation process with all coefficients optimised), and (L) (when starting from random waveforms). Error bars
represent the standard error of the mean. The Fourier coefficients predicted to be (potential) key contributors to PAC levels by
theory are highlighted by red rectangles in panels (H), (I), (K), and (L). MVL for the stimulation waveform with only coefficients
predicted by theory optimised is 0.563, MVL for the stimulation waveform with all coefficients optimised is 0.533, MVL in the
absence of stimulation is 0.082 (∆ff = 20 Hz). In all cases, waveform energy is fixed at Ξ = 5000. The parameters of the SL model
used are δ= 15, ks = 3, ff = 42 Hz, and fs = 6 Hz (r= 7).

2.1.3.1. Theoretical predictions
As before, we aim to determine which Fourier coef-
ficients of the stimulation waveform should be con-
sidered to enhance PAC. We show in section A.5 in
the appendix that the zeroth and first order com-
ponents of ρf (parametrised by ρ0, ρ1, and θ1 as
previously) must satisfy equations (21)–(23), where
g(ρf) was approximated by a truncated Fourier series

g(ρf) =
∑Nγ

n=−Nγ
dn (ρ0,ρ1,θ1)eniωst with truncation

order Nγ (note that each dn depends on the Fourier
coefficients of ρf ).

While these equations cannot be solved ana-
lytically, they demonstrate that if the ARC of the
fast population has Na Fourier coefficients, the
zeroth and first harmonic of ρf (and therefore
PAC strength) only depend on (possibly a subset
of) the Fourier coefficients of the stimulation of
order
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1,2, . . .,Nγ + 1

r−Nγ − 1, . . ., r+Nγ + 1

2r−Nγ − 1, . . .,2r+Nγ + 1

. . .

Nar−Nγ − 1, . . .,Nar+Nγ + 1.

To summarize, a kth harmonic in the ARC of the fast
population leads to coefficients of frequency kff and
kff ± fs in the optimal stimulation waveform for k> 0,
while a non-zeromean in the ARC results in the addi-
tion of the slow frequency fs. Significant dependence
of the ARC on ρf requires additional neighbouring
frequencies in steps of fs until ±(Nγ + 1)fs from kff,
and until (Nγ + 1)fs from fs. In particular, if the ARC
of the fast population has a dominant first harmonic
and does not depend strongly on ρf , it will be suffi-
cient to optimise the Fourier coefficients of the stim-
ulation waveform corresponding to fs, ff, and ff ± fs to
determine the optimal stimulation strategy. This cor-
responds to the combination of the two foundational
cases presented earlier.

2.1.3.2. Verification using numerical optimisation
To verify these predictions using numerical optimisa-
tion, we consider response curves of the fast popula-
tion with a non-zero mean and two harmonics given
by

PRC
(
θf,ρf

)
= g

(
ρf
)[
0.2− sin

(
θf
)
+ 0.7cos

(
2θf

)]
,

ARC
(
θf,ρf

)
= g

(
ρf
)[
0.4+ cos

(
θf
)
− 0.5sin

(
2θf

)]
,

for g(ρf) = 1 and g(ρf) = 1/(ρf + 0.01). Thus, we
verify in the former case that the key stimulation
waveform Fourier coefficients contributing to enhan-
cing PAC are limited to (possibly a subset of) coeffi-
cients of order 1, r, r− 1, r+ 1, as well as 2r− 1, 2r,
and 2r+ 1 as predicted (second harmonic in ARC). In
the latter case, the set of predicted potential depend-
ences expand to also include coefficients of order 2,
r− 2, r+ 2 as well as 2r− 2, and 2r+ 2 (we take
Nγ = 1 since g(ρf) is well described off-stimulation
by one harmonic as shown in figure S.3(A) in sup-
plementary material). As before, we optimise either
the Fourier coefficients of u(t) predicted by theory,
or all Fourier coefficients up to Nu = 20 to maximise
the MVL while constraining the energy of u(t) to Ξ
(see sections A.1 and A.2 for methodological details).

In both cases, the results of numerical optim-
isation support theoretical predictions (see figure 5
for g(ρf) = 1 and figure S.4 for g(ρf) = 1/(ρf + 0.01)
in supplementary material). The best-ranked stim-
ulation waveforms obtained from optimising coef-
ficients predicted by theory and all coefficients
show similarities (panels (J) in both figures), and
the resulting PAC levels are similar (in both cases
with a slight advantage when optimising Fourier

coefficients predicted by theory). Additionally, the
best-rank waveforms obtained when optimising all
coefficients concentrate their energy in a subset of the
Fourier coefficients predicted by theory (highlighted
by red rectangles in panels (H) in both figures).
In both cases, this is consistent across the top-50
local optimisations (panels (I) in both figures), and
confirmed by perturbation analysis (perturbation of
PAC-enhancing waveforms in panels (K) and of ran-
dom waveforms in panels (L), see section A.3 for
methodological details, perturbation of size

√
Ξ/10

as before). Comparing figures 5(H) and S.4(H), sig-
nificant energy is introduced in Fourier coefficients of
order 2 and 2r− 1 when the ARC of the fast popula-
tion depends on ρf as opposed to when it does not.
However the Fourier components with the largest
impact on PAC are the same in both cases (see pan-
els (K) and (L)). In figure S.4(H), the energy of b3 is
not negligible, indicating that g(ρf) = 1/(ρf + 0.01) is
best described by two harmonics when stimulation is
on (see figure S.3(B2) in supplementary material).

The optimal waveforms obtained from numer-
ical optimisation in figures 5(C) and S.4(C) com-
bine the two PAC-enhancing mechanisms presen-
ted in the two foundational cases (see figures 2(A)
and (B)). Because the mean amplitude response
of the fast population across phases is non-zero
(figure 2(C1)), the optimal stimulation waveform has
a slow-frequency component that directly particip-
ates in expanding and shrinking the fast-frequency
oscillations to produce PAC (figures 2(C2)–(C3) and
S.5(C)–(D) in supplementary material). Moreover,
because the amplitude response of the fast population
strongly depends on its phase (figure 2(C1)), modu-
lating the amplitude of the fast population requires
fast-frequency components in the stimulation wave-
form whose alignment with the fast rhythm is mod-
ulated throughout the slow cycle (figures 2(C4)–(C5)
and S.5(E)–(F) in supplementary material).

Using the SL model, we have identified how char-
acteristics of the fast population’s response to stimu-
lation dictate which frequencies should be included
in the optimal stimulation waveform, and how to
align potential fast stimulation components through-
out the slow cycle according to the fast population’s
ARC. We next investigate whether these predictions
carry over to a neural mass model generating PAC.

2.2. Testing optimal PAC-enhancing stimulation in
theWilson–Cowanmodel
To test predictions obtainedwith the SLmodel, we use
amore realistic neuralmassmodel representing inter-
acting neural populations, the Wilson–Cowan model
[43]. This model was proposed as a canonical circuit
to generate theta-gamma PAC in the presence of a
theta input [44]. The biologically-inspiredWCmodel
describes the interactions of an excitatory (E) and an
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Figure 5. Comparison between best PAC-enhancing waveforms predicted by theory and by numerical optimisation—example for
the general stimulation coupling case (no ρf dependence) in the Stuart–Landau model. The model output in the absence of
stimulation is shown in panel (A). The model output when receiving PAC-enhancing stimulation is shown in panels (B) (best
stimulation waveform obtained when optimising only Fourier coefficients predicted by theory) and (F) (best stimulation
waveform obtained when optimising all Fourier coefficients). The corresponding best PAC-enhancing stimulation waveforms are
shown in panels (C) and (G), respectively, and are overlaid for comparison in panel (J) (aligned to maximise their
cross-correlation). Their Fourier coefficients (absolute values) are shown in panels (D) and (H), respectively. The energy of
PAC-enhancing waveforms obtained from numerical optimisation for all Fourier coefficient orders (vertical axis) when averaging
the x-best optimisation results (x being the horizontal axis value) is represented in panels (E) (only Fourier coefficients predicted
by theory were optimised) and (I) (all Fourier coefficients were optimised). The absolute change in MVL when increasing the
energy of a given stimulation Fourier coefficient is provided in panels (K) (when starting from PAC-enhancing waveforms
obtained from the numerical optimisation process with all coefficients optimised), and (L) (when starting from random
waveforms). Error bars represent the standard error of the mean. The Fourier coefficients predicted to be (potential) key
contributors to PAC levels by theory are highlighted by red rectangles in panels (H), (I), (K), and (L). MVL for the stimulation
waveform with only coefficients predicted by theory optimised is 0.679, MVL for the stimulation waveform with all coefficients
optimised is 0.643, MVL in the absence of stimulation is 0.082 (∆ff = 20 Hz). In all cases, waveform energy is fixed at Ξ = 5000.
The parameters of the Stuart–Landau model used are δ= 15, ks = 3, ff = 42 Hz, and fs = 6 Hz (r= 7). Stimulation is acting
through PRC(θ) = 0.2− sin(θ)+ 0.7cos(2θ) and ARC(θ) = 0.4+ cos(θ)− 0.5sin(2θ).

inhibitory (I) population (see figure 6). The model is
presented in details in section A.6 in the appendix.

We test our predictions using two dynamically
distinct cases. The first is a theta-dominant example
with some theta-gamma PAC in the absence of stim-
ulation (figure 7(A)) based on the parameters used in
[44] (values given in table 1 in the appendix). This
case is inspired by situations where gamma is locked
to the peak of theta (e.g. in the human hippocam-
pus during memory encoding [6]), and increasing

PAC could be beneficial (e.g in AD). In this case,
the WC is in a fixed-point regime when the slow
input is low, and crosses the Hopf bifurcation to
the limit-cycle regime (gamma oscillations) when the
slow input increases (see [44] for more details). We
call this example the ‘strong theta case’. Our second
case corresponds to a hypothetical scenario where
PAChas almost completely disappeared due to patho-
logy and should be restored externally by stimulating
the fast rhythm. This second example displays pure
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Figure 6. Sketch of the Wilson–Cowan model with
stimulation. Intrinsic PAC can be generated by a slow
oscillatory input ηE provided to the excitatory population
(denoted E and shown in green). The inhibitory population
(denoted I and shown in red) receives a constant input ηI .
The excitatory and inhibitory populations are reciprocally
coupled, and the excitatory population has a self-excitatory
connection. The stimulation u(t) (in black) acts on the
excitatory population.

gamma oscillations (limit-cycle regime) with no slow
input and no PAC in the absence of stimulation (see
figure 8(A), parameters in table 1 in the appendix).
We call this example the ‘pure gamma case’. To invest-
igate whether predictions from the theory developed
using the SLmodel in section 2.1 carry over to theWC
model, we optimise Fourier coefficients of u(t) up to
Nu = 20 under energy constraint for both the strong
theta case and the pure gamma case. Methodological
details of the optimisation process can be found in
section A.2, and methodological details of the per-
turbation analysis can be found in section A.3 (per-
turbation size is as before).

To test the predictions of our framework, we
also compute the ARC in both cases (methodological
details can be found in section A.7 in the appendix).
In general, the ARC may depend on the full state of
the system (we investigated the case of the depend-
ence on ρf in the SL model in section 2.1.3), so
for the two-dimensional WC model the ARC may
also depend on the amplitude of the oscillations in
addition to their phase. Here, we compute the ARC
along representative trajectories selected to reflect
the dynamical regimes where significant levels of
stimulation are provided. For the strong theta case,
this corresponds to the high amplitude regime high-
lighted in gray in figure 9(A4). Stimulation is very
low during the adjacent low amplitude regime so the
ARC there is not relevant (in this case it is approx-
imately a scaled version of the ARC in the high
amplitude regime). For the pure gamma case, we
compute the ARC for the two distinct dynamical
regimes where significant levels of stimulation are
provided: a high amplitude regime (left gray rect-
angle in figure 9(B3)), and a lower amplitude, higher
frequency regime (right rectangle in figure 9(B3)).
The details of the trajectories used to compute the
ARC are shown in figure S.6 in supplementary
material.

In the strong theta case, when optimising all
Fourier coefficients of the stimulation waveform,
energy is concentrated in coefficients of order 1, r− 1,
and r (see figures 7(H) and (I), r= 6 based on off-
stimulation frequencies). Perturbation analysis high-
lights the role of coefficients of order r− 2 to r+ 2
when starting from optimised waveforms, and of
order r− 1 to r+ 1when starting from randomwave-
forms. When only optimising coefficients of order 1,
2, and r− 2 to r+ 2, we find significant energy only
in coefficients of order 1 and r− 2 to r (figures 7(D)
and (E)), and a slightly more favorable MVL value
than when optimising all coefficients (see figure cap-
tion). In light of the ARC of the stimulated WC pop-
ulation, these results are consistent with the predic-
tions obtained previously. In particular, the ARC has
a non-zero mean (light green line in figure 9(A1)),
which gives leverage to the Fourier coefficients of the
stimulation waveform at the slow frequency, i.e. of
order 1 (figures 9(A2) and (A3)). Furthermore, the
phase-dependence of the ARC is described by a strong
first harmonic (with some dependence on ρf ), hence
the key role played by coefficients belonging to orders
r− 2 to r+ 2 (no strong involvement of coefficients at
the second harmonic). Both mechanisms of actions
of optimal PAC-enhancing waveforms identified in
the SL model are therefore preserved in this example
(figures 9(A2)–(A5)).

In the pure gamma case, the involvement of
stimulation waveform Fourier coefficients around
the second harmonic of the fast frequency is much
more pronounced, and the slow frequency is absent.
When optimising all coefficients, energy is concen-
trated in coefficients of order r− 2 to r, and 2r
to 2r+ 3 (see figures 8(H) and (I), r= 6 based on
off-stimulation frequencies). Perturbation analysis
underlines the impact of coefficients of order r− 1
to r+ 1 (figures 8(K) and (L)). When only optim-
ising coefficients of order 1, 2, r− 2 to r+ 2, and
2r− 2 to 2r+ 2, we find significant energy only in
coefficients of order r− 2 to r, and 2r− 2 to 2r+ 1
(figures 8(D) and (E)), and a slightly less favorable
MVL value than when optimising all coefficients (see
figure caption). Given the ARC of the stimulated WC
population, these findings align with prior predic-
tions. Since the ARCmean is close to zero (light green
lines in figures 9(B1) and (B2)), optimal stimula-
tion waveforms have no significant energy at the slow
frequency. Moreover, the ARC shows a strong first
harmonic when ρf is high (figure 9(B1)). When ρf
is low, the frequency of the fast oscillations doubles
(faster frequency associated with the unstable fixed
point enclosed by the limit cycle), which corres-
ponds to a dominant second harmonic in the ARC
(figure 9(B2)). According to the previously developed
theory and given the dependence on ρf , this cor-
responds to the potential involvement of stimula-
tion coefficients of order r− 2 to r+ 2, and 2r− 2 to
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Figure 7. Comparison between best PAC-enhancing waveforms predicted by theory and by numerical optimisation—strong theta
case in the Wilson-Cowan model. The model output in the absence of stimulation is shown in panel (A). The model output when
receiving PAC-enhancing stimulation is shown in panels (B) (best stimulation waveform obtained when optimising only Fourier
coefficients predicted by theory) and (F) (best stimulation waveform obtained when optimising all Fourier coefficients). The
corresponding best PAC-enhancing stimulation waveforms are shown in panels (C) and (G), respectively, and are overlaid for
comparison in panel (J) (aligned to maximise their cross-correlation). Their Fourier coefficients are shown in panels (D) and (H),
respectively. The energy of PAC-enhancing waveforms obtained from numerical optimisation for all Fourier coefficient orders
(vertical axis) when averaging the x-best optimisation results (x being the horizontal axis value) is represented in panels (E) (only
Fourier coefficients predicted by theory were optimised) and (I) (all Fourier coefficients were optimised). The absolute change in
MVL when increasing the energy of a given stimulation Fourier coefficient is provided in panels (K) (when starting from
PAC-enhancing waveforms obtained from the numerical optimisation process with all coefficients optimised), and (L) (when
starting from random waveforms). Error bars represent the standard error of the mean. MVL for the stimulation waveform with
only coefficients predicted by theory optimised is 0.102, MVL for the stimulation waveform with all coefficients optimised is
0.101, MVL in the absence of stimulation is 0.0045 (∆ff = 20 Hz). In all cases, waveform energy is fixed at Ξ = 1. The parameters
of the Wilson–Cowan model used are taken given in table 1 (strong theta row), and r= 6 (off-stimulation).

2r+ 2, which is verified here. An exception to this is
the 2r+ 3 term seen in figure 8(I), which may be due
to the speed-up of fast oscillations at low ρf (r= 5
on stimulation), or to the fact that the dependence
on ρf cannot be described sufficiently well by a single
harmonic.

2.3. Practical considerations
We begin by summarising in a flowchart
(figure 10(A)) the insights from the previous
sections with a view to help experimentalists design
PAC-enhancing stimulation. As a reminder, we are

assuming that stimulation solely affects the fast pop-
ulation, and our predictions are based on the ARC
of the fast population (representing the change in
the amplitude of the fast population as a function
of the phase of stimulation), which can be measured
experimentally [35, 45]. If the amplitude response
to stimulation of the fast rhythm does not depend
on its phase, optimal stimulation is at the slow fre-
quency fs. If the amplitude response does depend on
the phase of the fast rhythm and its mean is neg-
ligible, then the optimal stimulation is a combina-
tion of the fast frequency ff, as well as ff ± fs (and
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Figure 8. Comparison between best PAC-enhancing waveforms predicted by theory and by numerical optimisation—pure
gamma case in the Wilson-Cowan model. The model output in the absence of stimulation is shown in panel (A). The model
output when receiving PAC-enhancing stimulation is shown in panels (B) (best stimulation waveform obtained when optimising
only Fourier coefficients predicted by theory) and (F) (best stimulation waveform obtained when optimising all Fourier
coefficients). The corresponding best PAC-enhancing stimulation waveforms are shown in panels (C) and (G), respectively, and
are overlaid for comparison in panel (J) (aligned to maximise their cross-correlation). Their Fourier coefficients are shown in
panels (D) and (H), respectively. The energy of PAC-enhancing waveforms obtained from numerical optimisation for all Fourier
coefficient orders (vertical axis) when averaging the x-best optimisation results (x being the horizontal axis value) is represented
in panels (E) (only Fourier coefficients predicted by theory were optimised) and (I) (all Fourier coefficients were optimised). The
absolute change in MVL when increasing the energy of a given stimulation Fourier coefficient is provided in panels (K) (when
starting from PAC-enhancing waveforms obtained from the numerical optimisation process with all coefficients optimised), and
(L) (when starting from random waveforms). Error bars represent the standard error of the mean. MVL for the stimulation
waveform with only coefficients predicted by theory optimised is 0.069, MVL for the stimulation waveform with all coefficients
optimised is 0.070, MVL in the absence of stimulation is 1.3× 10−5 (∆ff = 20 Hz). In all cases, waveform energy is fixed at
Ξ = 1. The parameters of the Wilson–Cowan model used are taken given in table 1 (pure gamma), and r= 6 (off-stimulation).

corresponding harmonics if there are strong harmon-
ics in the ARC of the fast population). Otherwise, the
optimal stimulation is a combination of these two
strategies. Neighbouring frequency components may
be added if the result is not satisfactory, potentially
indicating a dependence of the amplitude response
on the amplitude of the fast population. We also
note that the same framework applies if one aims
to reduce rather than enhance PAC. The resulting
optimal stimulation waveforms will however be dif-
ferent (for example, the waveform will be anti-phase
in the case of slow-frequency stimulation). We next

examine the trade-offs between Fourier coefficients
of optimal PAC-enhancing stimulation waveforms,
investigate whether phase-locking to the slow and/or
fast rhythms is necessary, and how to approxim-
ate optimal PAC-enhancing stimulation waveforms
using pulses.

2.3.1. Trade-offs between Fourier coefficients of the
stimulation waveform
The theory developed in section 2.1 identifies which
Fourier coefficients should be considered to build
an optimal PAC-modulating stimulation waveform,
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Figure 9. PAC-enhancing mechanisms in the Wilson–Cowan model. (A) corresponds to the strong theta case, and (B) to the pure
gamma case. The ARCs shown were calculated in the regimes highlighted in grey. In (A), the amplitude response of the excitatory
population depends on its phase and has a non-zero mean (highlighted in light green in (A1)). The optimal stimulation
waveform (taken from figure 7(C)) combines the mechanisms of PAC-enhancement corresponding to the foundational cases one
and two in the SL model (slow-frequency stimulation in (A2)–(A3), and fast-frequency stimulation in (A4)–(A5)). The dark red
line in (A3) represents a moving average of the optimal stimulation waveform (sliding window corresponding approximately to
two fast-population cycles). In (B), the amplitude response of the excitatory population has a mean close to zero (light green line
in (B1)–(B2)), but a strong phase dependence. Thus, only the mechanism corresponding to foundational case two in the SL
model is at play here (fast-frequency stimulation in (B3)–(B4)). The ARC strongly depends on the amplitude of the excitatory
population, and the presence of a strong second harmonic in (B2) leads to a strong component around twice the fast frequency in
the stimulation waveform.

Figure 10. Simplified flowcharts to guide the design of optimal PAC-enhancing stimulation. We are assuming that stimulation
acts solely on the fast population. The flowchart in panel (A) presents which Fourier coefficients of the stimulation waveform to
optimise. Neighbouring frequency components may be added if the result is not satisfactory, potentially indicating a dependence
of the amplitude response on the amplitude of the fast population. The flowchart in panel (B) assumes that stimulation does not
significantly entrain the slow rhythm and presents a guide to decide whether phase-locking the stimulation to the fast and/or slow
rhythms is necessary.
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but does not prescribe how much energy should be
assigned to these coefficients (except in the simplest
case of stimulation being coupled through the mean-
field of the fast population, where only one Fourier
component is involved). From the mechanism illus-
trated in figure 2(B), the waveform can be manu-
ally designed such that where the amplitude of the
fast oscillation should be increased, the phase align-
ment between the fast component in the stimula-
tion waveform and the fast rhythm correspond to
the maximum amplification in the ARC. Conversely,
where the amplitude of the fast oscillation should
be decreased, the phase alignment between the fast
component in the stimulation waveform and the fast
rhythm should correspond to the maximum sup-
pression in the ARC. Here, we investigate numeric-
ally whether other principles can be found to guide
the design of optimal PAC-modulating stimulation
waveforms.

In particular, we aim to contrast optimal PAC-
enhancing stimulation for different levels of endogen-
ous fast oscillations and slow input. To this end, we
consider the SL model (equations (1) and (3)), with
stimulation coupled to the fast population through
ARC(θf) = 0.5+ cos(θf) and PRC(θf) = sin(θf) for
simplicity. As previously outlined, the level of endo-
genous fast oscillations is controlled in this model by
δ, and the level of slow oscillations is controlled by ks.

To efficiently optimise the stimulation waveform
across combinations of δ and ks, we simplify the
optimisation problem as follows. We parametrise the
stimulation waveform Fourier series as

u(t) =
Nu∑

n=1

An cos(nωst−Φn) , (11)

where the amplitudes An are positive, and the phases
Φn are in [0,2π). In the SL model considered, only
Fourier coefficients of order 1, r− 1, r, and r+ 1 sig-
nificantly impact PAC levels (see section 2.1.3 with
Nα = 1 and g(ρf) = 1). We therefore perform a para-
meter sweep for combinations of A1, Ar−1, and Ar

(Ar+1 is obtained by matching the target stimula-

tion energy, i.e. Ar+1 =
√
2Ξ −A2

1 −A2
r−1 −A2

r ). For

each combination of amplitudes, we only need to
optimise the phases Φ1, Φr−1, Φr, and Φr+1. These
are simpler optimisations than the method described
in section A.2 because there is no non-linear con-
straint to enforce by the optimiser, and there are only
four parameters to optimise. Because of the coarse-
graining of amplitudes, this approach is less precise
than the full optimisations performed previously, but
is more efficient. This allows us to explore changes
in optimal stimulation waveform as a function of the
strength of endogenous fast and slow oscillations in
the model. We use 10 equally spaced amplitude val-
ues for each of A1, Ar−1, and Ar (i.e. 1000 amplitude
combinations), and perform five local optimisations

per combination. Other methodological details are
unchanged and per section A.2 in the appendix.

Changes in the balance between Fourier amp-
litudes as a function of the strength of endogenous
fast and slow oscillations in themodel (figures 11(A)–
(C)) are relatively minor but can be explained
intuitively. As endogenous fast oscillations become
stronger (increase in δ), the Fourier amplitudes cor-
responding to the fast frequency (Ar) and the slow
frequency (A1) decrease in favor of the Fourier amp-
litudes corresponding to the modulation of the fast
frequency at the slow frequency (Ar−1 and Ar+1).
There is relatively less endogenous modulation, so
an increase in the modulation of the fast frequency
is necessary to bring down the trough of ρf as per
the mechanism described in foundational case two
(section 2.1.2 and figure 2(B)). Conversely, provided
that endogenous fast oscillations are relatively weak
(low δ), as endogenous slow oscillations become
stronger (increase in ks), the Fourier amplitudes cor-
responding to the modulation of the fast frequency
at the slow frequency (Ar−1 and Ar+1) decrease in
favor of the Fourier amplitude corresponding to the
fast frequency (Ar). Because endogenous modulation
relative to fast-frequency activity is already high, less
modulation is needed from stimulation and boost-
ing the fast frequency is advantageous. We choose
the model parameters studied in figures 11(A)–(C)
to cover a broad range of relative strength of fast
to slow oscillations (model output in the absence of
stimulation across parameters shown in figure S.7
in the supplementary material). The optimal PAC-
enhancing waveforms resulting from the optimisa-
tions, as well as the on-stimulation model outputs
are shown in figures S.8 and S.9 in the supplement-
ary material, respectively. While small changes in the
balance of Fourier amplitudes cannot be detected
due to coarse-graining, examination of the cost (here
−MVL) across Fourier amplitudes (figure 11(D))
supports the convergence to a single local minimum
(for a given set of model parameters). Furthermore,
the shift of the entire area of low cost in the space
of Fourier amplitudes confirms the trends described
above. Figure 11(D) is given for Ar−1 = 55.56, but
similar results are obtained across all Ar−1 considered
in the sweep.

2.3.2. Is phase-locking to the slow rhythm necessary?
In the theory and examples presented in this work,
stimulation is provided with a period corresponding
to the slow-oscillation frequency. Thus, stimulation
is phase aligned to the slow rhythm at steady-state,
and the specifics of the phase alignment are dictated
by the Fourier component make-up of the stimula-
tion waveform. With practical applications in mind,
we investigate in this section whether phase-locking
to the slow-rhythm is necessary to modulate PAC.
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Figure 11. Balance between optimal Fourier amplitudes and cost landscape as a function of the strength of endogenous fast and
slow oscillations in the Stuart–Landau model. The strength of endogenous slow oscillations is controlled by model parameter ks
(blue arrows), and the strength of endogenous fast oscillations by model parameter δ (green arrows). The balance between
Fourier amplitudes of PAC-enhancing optimal stimulation waveforms as a function of the strength of endogenous fast and slow
oscillations is shown in panels (A)–(C). Panel (A) corresponds to the slow-frequency Fourier amplitude (A1), panel (B) to the
fast-frequency Fourier amplitude (Ar), and panel (C) to the modulation of the fast frequency at the slow frequency
(Ar−1 +Ar+1). Panel (D) shows in color the best objective function values (costs) resulting from optimising Fourier phases to
enhance PAC for Ar−1 = 55.56, as a function of A1 and Ar, and as a function of the strength of endogenous fast and slow
oscillations (specific values indicated on the blue and green axes). For a given combination of ks and δ, the minimum cost for the
Ar−1 slice shown is highlighted by a red circle. In all panels, the total stimulation waveform energy is kept at Ξ = 5000, and the
frequency of endogenous oscillations is ff = 42 Hz, and fs = 6 Hz. Stimulation is coupled to the fast population through
ARC(θf) = 0.5+ cos(θf) and PRC(θf) = sin(θf).

To this end, we simulate the SL model with
stimulation coupled to the fast population through
its mean-field (equation (4), see section 2.1.1).
We already know from the analytical analysis in
section 2.1.1 that the optimal stimulation is a sinusoid
with its peak aligned to the peak of the slow rhythm.
However it is unclear how essential this optimal phase
alignment is. To answer this question, we provide
the optimal PAC-enhancing stimulation at various
phases of the slow rhythm andmeasure resulting PAC
levels. We also perform the same analysis in the SL
model with stimulation directly coupled to the fast
population (as in section 2.1.2), thereby investigating
the two foundational cases presented in this work.

The importance of phase alignment between
stimulation and the slow rhythm depends on
PAC levels in the absence of stimulation in both
cases. When off-stimulation PAC levels are low

(figures 12(A3) and (B3)), a significant PAC-
enhancing effect can still be achieved without phase
alignment (figures 12(A1) and (B1)). However, when
off-stimulation PAC levels are higher (figures 12(A4)
and (B4)), providing stimulation close to the optimal
phase is critical to enhance PAC (figures 12(A2) and
(B2)). For example, providing stimulation half a
period too late/early leads to a significant decrease
in PAC. We note that the fast-frequency oscilla-
tions can be entrained by stimulation in the dir-
ect coupling case, but not in the mean-field coup-
ling case (because the PRC is zero). Regardless of
the stimulation coupling function, our simulations
assume that stimulation does not affect the slow
rhythm, and therefore cannot entrain it. Generally,
enhancing the existing phase-amplitude relation-
ship between two rhythms requires phase locking,
but may be more physiological. This is the case in
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Figure 12. The importance of phase alignment between stimulation and the slow rhythm depends on off-stimulation PAC levels.
PAC-enhancing stimulation waveforms are provided at different phases of the slow rhythm. Panels (A1)–(A4) correspond to the
SL model with stimulation coupled to the fast population through its mean-field and the stimulation waveform given in
figure 3(C), while panels (B1)–(B4) correspond to the SL model with direct stimulation coupling and the stimulation waveform
given in figure 4(C). Panels (A1), (A2) and (B1), (B2) show the MVL as a function of stimulation phase of the slow rhythm in
blue (a stimulation phase of zero corresponds to the peaks of the stimulation waveform and the slow rhythm being aligned), and
the off-stimulation MVL level in red. Panels (A3), (A4) and (B3), (B4) represent the corresponding off-stimulation model output
(real part of the order parameter). In (A1)–(A4), ff = 40 Hz, fs = 6 Hz, and δ= 5000. Panels (A1), (A3) correspond to ks = 500,
and Ξ = 1× 107. Panels (A2), (A4) correspond to ks = 2000, and Ξ = 5× 105. In (B1)–(B4), ff = 42 Hz, fs = 6 Hz, δ= 15, and
Ξ = 5000. Panels (B1), (B3) correspond to ks = 3, and panels (B2), (B4) to ks = 10. Note that the stimulation waveform provided
in (B) is optimal for (B1) but not for (B2).

figures 12(A2) and (B2) where overriding the exist-
ing phase-amplitude relationship would require too
much energy, and enhancing the existing phase-
amplitude relationship is the only viable strategy.
Conversely, a phase-amplitude relationship differ-
ent from the existing phase-amplitude relationship
between the fast and slow rhythms is enforced by
stimulation for a stimulation phase of e.g. π in
figures 12(A2) and (B2).

2.3.3. Is phase-locking to the fast rhythm necessary?
In situations where stimulation acts through the
mechanism described in foundational case two (see
figure 2(B)), the differential alignment (as prescribed
by the ARC) of the stimulation fast frequency com-
ponents with the fast rhythm at the peak and trough
of the slow rhythm is critical. In the ideal case where
ff is constant and an integer multiple of fs, this align-
ment is enforced as a consequences of phase-aligning
stimulation with the slow rhythm. However, we show
that in the more realistic scenario where ff is not an
integer multiple of fs or significantly varies over time,
adapting stimulation to the frequency fluctuations of
the fast rhythm will give better results. To this end,
we simulate the SL model as in the previous section
(stimulation coupling corresponding to foundational
case two) for different values of fs, as well as with ff
varying according to a Wiener process.

If the stimulation waveform (optimised for ff =
42 Hz) does not change, the maximum achievable
PAC modulation decreases as ff is varied from 42 Hz
(figure 13). The optimal phase alignment between

the stimulation waveform and the slow rhythm also
changes (figures 13(A1) and (B1)). Similarly, we show
that when ff varies according to a Wiener process,
increasing the level of noise drastically reduces the
ability of open-loop stimulation to modulate PAC
(figure S.10 in supplementary material). Together,
these results suggest that if the stimulation wave-
form contains fast frequency components, it is advis-
able to lock these with the fast rhythm (in the man-
ner prescribed by the ARC of the fast rhythm).
We summarise the conclusions of this subsection
and the previous one in the flowchart presented in
figure 10(B).

2.4. Pulsatile waveforms
Optimal waveforms parametrised by Fourier coef-
ficients may be applicable to stimulation modalit-
ies such as tACS, but are not directly applicable to
stimulation modalities that can only generate square
pulses (e.g. DBS). However, these smooth optimal
waveforms can be approximated using pulsatile wave-
forms. We suggest different ways of doing so, and
compare the resulting pulsatile waveforms to the cor-
responding optimal smooth waveforms in terms of
their effects on PAC in the SL andWCmodels presen-
ted before. We approximate smooth waveforms using
regularly spaced square pulses, with a certain pulse
frequency and pulse duration. The amplitude (intens-
ity) of each pulse is simply given by the amplitude of
the smooth waveform at the center of the pulse (as
shown for e.g. figure 14(E1)), with a scaling factor
determined to either match the energy of the smooth
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Figure 13. Effect of changes in the fast rhythm frequency on PAC modulation. The PAC-enhancing stimulation waveform
optimised for fs = 6Hz and ff = 42 Hz was provided at different phases of the slow rhythm, and for different values of the fast
rhythm frequency. Panels (A1) and (B1) show the MVL as a function of ff, and of the stimulation phase of the slow rhythm (a
stimulation phase of zero corresponds to the peaks of the stimulation waveform and the slow rhythm being aligned). No color is
shown when the MVL is below the off-stimulation value. The optimal stimulation phase relative to the slow rhythm depends on
ff, and the maximum achievable MVL decreases away from ff = 42 (in the absence of adjustment of the stimulation to the fast
rhythm). This is confirmed in panels (A2) and (B2), where the maximum achievable MVL for a given value of ff is shown on the
vertical axis (off-stimulation MVL level in red). In all panels, simulations are performed using an SL model with direct
stimulation coupling and the stimulation waveform given in figure 4(C). Parameters used are fs = 6 Hz, δ= 15, and Ξ = 5000.
Panels (A1)–(A2) correspond to ks = 3, and panels (B1)–(B2) to ks = 10.

waveform (i.e.
´
u(t)2dt), or its cumulative abso-

lute intensity (i.e.
´
|u(t)|dt). Model simulation with

pulsatile waveforms required to use Euler’s method,
as a variable step solver (used in the rest of this work)
would lead to pulse durations varying with the integ-
ration step.

For the SL models investigated in foundational
cases one (section 2.1.1) and two (section 2.1.2), rel-
atively low pulse frequencies (135Hz for 0.5ms pulse
duration) are sufficient for the corresponding pulsat-
ile waveform to increase PAC as much as the smooth
optimal waveform when matching cumulative abso-
lute intensity (figure 14(A)). When matching wave-
form energy, pulse frequency has to be markedly
increased to notably affect PAC (figure 14(A)).
Alternatively, pulse duration can be lengthened while
maintaining a low pulse frequency (figures 14(B)

and (C)). For the SL models investigated in the gen-
eral stimulation coupling case (section 2.1.3), higher
pulse frequencies are generally required to match
the effects on PAC of the smooth optimal wave-
forms (around 360 Hz for 0.5 ms pulse duration,
see figure S.11 in supplementary material). This is
also the case with the WC models investigated in
section 2.2, see figure S.12 in supplementary mater-
ial. However, increasing pulse duration can consider-
ably lower the pulse frequency required (figures 15(B)
and (C)). Moreover, irregular pulse spacing chosen
such that pulses are centered on the local peaks of
the smooth waveform (as shown in figures 15(D1)
and (G1)) can further reduce the (average) pulse fre-
quency required to 75 Hz (10ms pulse) for the strong
theta case, and to 197 Hz (3 ms pulse) for the pure
gamma case
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Figure 14. Optimal smooth waveforms can be approximated with pulses—foundational cases one and two in the SL model. MVL
is shown as a function of pulse frequency, for a pulse duration of 0.5ms (A), and as a function of pulse duration, for a pulse
frequency of 130Hz (B) and 390Hz (C). In these panels, foundational case one (mean-field coupled stimulation, parameters
corresponding to figures 3(B)–(D)) is shown in dark green, and foundational case two (direct stimulation coupling, parameters
corresponding to figures 4(B)–(D)) is shown in light green. Solid lines correspond to pulsatile waveforms obtained by matching
the cumulative absolute intensity of the optimal smooth waveforms, while dashed lines correspond to pulsatile waveforms
obtained by matching the energy of the optimal smooth waveforms. Dotted lines (behind the solid lines where they are not
visible) correspond to the smooth optimal waveforms. Panels (D)–(I) show the smooth optimal waveform in red and the pulsatile
approximation in black denoted by up(t) (top), as well as the resulting activity of the fast population (bottom). Pulse
frequencies/durations are as follow: 135Hz/0.5ms in (D) and (G), 130Hz/4.8ms in (E) and (H), 390Hz/2.0ms in (F) and (I).

3. Discussion

In this work, we developed a framework to guide the
development of optimal PAC-enhancing stimulation.
Our framework is for stimulation acting on the neural
population generating the fast rhythm, and assumes
that neither stimulation nor the fast rhythm signific-
antly affect the slow rhythm (assumed to be generated
by another neural population). Using a SL model, we
showed that the ARC of the fast population determ-
ines which Fourier coefficients should be included
and optimised in the stimulation waveform.

Specifically, if the amplitude response to stim-
ulation of the fast rhythm does not depend on its
phase, optimal stimulation is at the slow frequency
fs (figure 2(A)). If the amplitude response of the fast

rhythm does depend on its phase and its mean is neg-
ligible, then the optimal stimulation is a combina-
tion of the fast frequency ff, as well as ff ± fs (and cor-
responding harmonics if there are strong harmonics
in the ARC of the fast population), see figure 2(B).
Otherwise, the optimal stimulation is a combination
of these two strategies (figure 2(C)). Neighbouring
frequency components may be added if the result is
not satisfactory, potentially indicating a dependence
of the amplitude response on the amplitude of the fast
population.

Additionally, the predictions obtained with the
SL model appeared to carry over in several dynam-
ical regimes of a more realistic neural mass model
representing interacting neural populations, the WC
model (figure 9). Moreover, we showed in the SL
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Figure 15. Optimal smooth waveforms can be approximated with pulses—WCmodel. MVL is shown as a function of pulse
duration for pulses centered on the local peaks of the smooth waveform (A), as well as for a pulse frequency of 130Hz (B) and
390Hz (C). In these panels, the strong theta case (parameters corresponding to figures 7(B)–(D)) is shown in light green, and the
pure gamma case (parameters corresponding to figures 8(B)–(D)) is shown in dark green. Solid lines correspond to pulsatile
waveforms obtained by matching the cumulative absolute intensity of the optimal smooth waveforms, while dashed lines
correspond to pulsatile waveforms obtained by matching the energy of the optimal smooth waveforms. Dotted lines correspond
to the smooth optimal waveforms. Panels (D)–(I) show the smooth optimal waveform in red and the pulsatile approximation in
black (top), as well as the resulting activity of the fast population (bottom). Pulse frequencies/durations are as follow:
75.4Hz(average)/5.9ms in (D), 130Hz/5.8ms in (E) and (I), 390Hz/2.0ms in (F), 197Hz(average)/3.0ms in (G), and
130Hz/2.9ms in (H).

model that changes in the balance between Fourier
amplitudes as a function of the strength of endogen-
ous fast and slow oscillations are relatively minor but
can be explained intuitively (figure 11).We also estab-
lished that when stimulation includes fast frequency
component, it is likely that locking these with the fast
population (as specified by the ARC) will be neces-
sary. When stimulation does not include fast com-
ponents, the importance of phase alignment between
stimulation and the slow rhythm depends on PAC
levels in the absence of stimulation, and on whether
overriding the existing phase-amplitude relationship
is acceptable (figure 12). Finally, for neuromodula-
tion modalities that can only generate square waves,
the optimal waveforms predicted by our framework
can be approximated by pulsatile waveforms.

3.1. Modelling PAC generation
Models with various levels of biophysical details have
been used to investigate PAC. For example, detailed
single and multi-compartment models can generate
PAC (see [46] for a review), and the emergence of PAC
was investigated in a simulated hippocampal CA1
microcircuit with morphologically detailed neurons
[47]. Neural mass models with various types of coup-
ling can also produce PAC, from simple E− I loops
[44] to realistic circuits comprising four cortical lay-
ers and dozens of populations [48]. The canonical
types of population interactions leading to PAC have
been reviewed in [49] (ourmodels correspond to uni-
directional coupling from a slow population to a fast
population), and the bifurcation types responsible for
PAC in these models are studied in [50]. Importantly,
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the effects of brain stimulation on PAC were only
explored in a couple of modelling studies to date,
namely in a neuronal network consisting of one thou-
sand cells simulated in NEURON [51], and recently
in a model connecting a biophysically-detailed rep-
resentation of the hippocampuswithKuramoto oscil-
lators portraying input from the medial septum [52].

We chose the SL model for its ability to repres-
ent a neural oscillator with a phase and an amplitude
variable going through a Hopf bifurcation, and for
its analytical tractability which allowed us to gain
insights into optimal PAC-enhancing stimulation.We
chose the WC model to test the predictions obtained
with the SL model since the WCmodel has been pro-
posed as a canonical E-I circuit to generate PAC [44]
and has been commonly used to study neural oscilla-
tions and optimise therapeutic brain stimulation [44,
53–60]. Crucially, the WC model is a relatively inex-
pensive to simulate neural mass model (as opposed
to models requiring to simulate individual neurons),
which makes numerical optimisation of the stimula-
tion waveform possible. Additionally, in both our SL
and WC models, the fast rhythm can be periodically
inhibited by the slow rhythm as in detailed neuron
models reviewed in [46], but the fast population can
also be quiescent (δ ! 0 in the SL model and trough
of the strong theta regime in the WC model). In that
case, fast oscillations are only brought about by the
rising slow input causing themodel to traverse aHopf
bifurcation [27, 44] (see the WC model strong theta
case in section 2.2).

3.2. Comparing predictions with experimental data
Results of recent experimental studies are in line with
some of the predictions made in this work. In par-
ticular, bursts of stimulation phased-locked to the
peak of the slow rhythm were found to increase PAC
compared to baseline and to stimulation provided
at the trough of the slow rhythm [25, 26]. These
could correspond to purely excitatory pulses acting
through the mechanism presented in section 2.1.1
(see figure 2(A)), or to pulses with excitatory and
inhibitory components acting through the mech-
anism presented in section 2.1.2 (see figure 2(B))
where phase-alignment with the peak of the fast oscil-
lations happens through entrainment. Other stud-
ies reported improvements in memory performance
[61], motor skill acquisition [62], and cognitive task
performance [63] after open-loop transcranial altern-
ative current stimulation with bursts of gamma stim-
ulation superimposed to the peak of a theta stim-
ulation waveform. No improvement was reported
in [61, 62] when gamma bursts are superimposed
to the trough of the theta stimulation waveform.
Although PAC was not measured during stimulation,
these behavioural improvements are likely mediated
by an increase in PAC. The effective stimulationwave-
form in these studies correspond to the combination
of mechanisms one and two, and is similar to the

optimal waveform in theWCmodel strong theta case
(see figure 9(A)). Since stimulation was open-loop,
entrainment of both the slow and fast rhythms may
have played a role. Furthermore, the additive effect
of both mechanisms (i.e slow and fast components
of the stimulation waveform) on memory perform-
ance was confirmed in [61], as well as the frequency
specificity of the fast component of the stimulation
waveform.

Nevertheless, more experimental work is required
to validate our framework, in particular with regards
to the relationship between the characteristics of the
ARC of the fast population and the optimal PAC-
enhancing waveform. The ARC of the fast population
of interest could be measured experimentally using
phase-locked stimulation as in previous studies [35,
45]. Recent advances in continuous real-time phase
estimation with zero filter delay [64] (also see link to
code in [35]) make phase-locking to fast oscillations
feasible (robust phase-locking was achieved at 40 Hz
in [35]). Another method was recently shown to reli-
ably estimate in real-time the phase of oscillations
up to 250 Hz in synthetic data [65]. These advances
will also be key to phase-locking stimulation to the
fast rhythm according to the mechanism described in
figure 2(B).

3.3. Limitations
In this work, the slow rhythm involved in PAC was
considered to be generated by an external neural pop-
ulation (for example by the medial septum in the case
of hippocampal theta-gamma PAC). It was assumed
that neither the fast population nor stimulation sig-
nificantly influence the slow rhythm. This is justified
if stimulation is local to the fast population, and the
influence of the fast population on the slow rhythm
averages out on the slow timescale [27] or the projec-
tions from the fast population to the slow population
are weak. However, if stimulation significantly affects
the slow rhythm, the impact on PAC can be substan-
tial as shown recently [52]. Including in our frame-
work the potential effects of stimulation on the slow
rhythm will be a focus for future work. Additionally,
how our framework may generalise to more detailed
models of neural populations has not been studied
beyond the WC. Since the SL model used to develop
the framework is the normal form of a Hopf bifurca-
tion, we can speculate that our predictions may hold
in more detailed models (e.g. including detailed rep-
resentations of individual neurons) that operate in
the vicinity of a Hopf bifurcation.

Further limitations of this study include the
absence of noise and the absence of synaptic plas-
ticity in our models, as well as technical assump-
tions in derivations (the ARC is assumed to be a
separable function of phase and amplitude, and we
assumed small stimulation and ωf ≫ ωs or entrain-
ment). We also used a non-normalised MVL meas-
ure, although this is offset by the fact that stimulation
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waveform energy is constrained in numerical optim-
isations. Numerical optimisations were limited by
available supercomputing resources, and the optimal
balance of stimulation waveform Fourier coefficients
across model parameters could not be investigated
with a finer Fourier amplitude grid in the SL model,
or at all in the WC model. Lastly, our framework
assumes a smooth stimulationwaveform (as in tACS).
Whilewe propose differentways of approximating the
smooth optimal waveforms with pulsatile waveforms
for neuromodulation devices that can only generate
pulses (section 2.4), the pulse frequencies and dura-
tions requiredmay not be achievable by some of these
devices.

3.4. Conclusion
We have presented a framework to design optimal
PAC-enhancing (or PAC-decreasing) stimulation
based on the amplitude response of the fast pop-
ulation, assuming that stimulation acts solely on
the neural population generating the fast rhythm.
We hope that this framework can help guide the
development of innovative therapeutic brain stim-
ulation aiming at restoring healthy levels of PAC, for
example in patients with AD, where theta-gamma
PAC is abnormally low and correlates with cognitive
symptoms.
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Appendix

In this section, we provide methodological details
pertaining to PAC measurement, numerical optim-
isation of the stimulation waveform to enhance PAC,
the perturbation analysis of stimulation Fourier coef-
ficients, the WC model, and the estimation of ARCs
in the WC model. We also present derivation details
for the analytical approaches pursued in the SLmodel
with direct stimulation coupling and general stimula-
tion coupling.

A.1. Measuring PAC levels in simulations
In our simulations, the MVL is obtained in discrete
time as

MVL=
1

Nt

∣∣∣∣∣∣

Nt∑

j=1

ρf
(
tj
)
eiωstj

∣∣∣∣∣∣
, (12)

whereNt is the number of sampling points in the time
period considered. The amplitude ρf is the Hilbert
amplitude of the filtered model output (model out-
put taken as ℜ(zf) for SL [42], and as E for WC). A
third-order butterworth filter with zero-phase filter-
ing is used to avoid phase distortions, and the Hilbert
amplitude is given by the modulus of the analytic sig-
nal constructedwith theHilbert transform. It was also
found empirically that stimulation waveform optim-
isations become unstable for narrow filter half-widths
such as∆ff = 5Hz.We therefore use filter half-widths
of 10 or 20 Hz (see corresponding figure captions for
specific values). Note that the phase of the slow signal
is given in equation (12) by ωsti since in the examples
considered, the slow signal is always cos(ωsti), or a
scaled and shifted version of it.

A.2. Numerical optimisation of stimulation
waveform
To test our theory in the SL and WC models, we
numerically optimise the Fourier coefficients of the
stimulation waveform tomaximise PAC. Each optim-
isation on a given variant of the SL orWCmodel con-
sists of many local optimisations starting from dif-
ferent initial values of the stimulation Fourier coeffi-
cients. These are drawn from a uniform distribution
on a logarithmic scale between 10−3 and 1, and then
rescaled so that the energy of each initial waveform is
the target stimulation energy Ξ. Local optimisations
are performed in Matlab using the non-linear optim-
iser fmincon based on the interior-point algorithm
[66], under the constraint that the energy of the wave-
form (given by

∑Nu

j [a2j + b2j ]/2) is kept within a small
tolerance (ϵ= 0.1) of the target waveform energy Ξ.
The target energy is chosen for each model variant so
that the optimal stimulation has a significant effect on
PAC (see corresponding figure captions for the spe-
cific target values). Hard bounds between ±

√
2Ξ are

also enforced during optimisation. For optimisation
speed and accuracy, the models are simulated using
Matlab’s solver ode113 (variable-step, variable-order
Adams-Bashforth-Moulton solver of orders 1–13). At
each optimisation step, models are simulated for 30 s
for variants of the SL model, and 20 s for variants of
the WC model (reduced duration to improve optim-
isation speed). The transient is discarded by removing
the first third of the simulation output.

The objective function tominimise during optim-
isation is

cost=−MVL+
1

µ
(
2Nopt

u

)√
2Ξ

∥x∥1, (13)
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where the first term ensures that the level of
PAC is maximised (MVL obtained as described in
section A.1), and the second term is a regularisa-
tion term. The Fourier coefficients being optimised
are denoted x= [a1, . . .,aNopt

u
,b1, . . .bNopt

u
], and the

norm ∥x∥1 =
∑

i |xi| denotes the 1-norm. The reg-
ularisation term is scaled using the absolute energy
bound for Fourier coefficients during the optimisa-
tion (

√
2Ξ), the number of Fourier coefficients being

optimised (2Nopt
u ), and a regularisation parameter µ.

Regularisation was only used to guide the more chal-
lenging optimisations—we used µ= 1 for the variant
of the SL model with dependence on ρ, µ= 15 for the
WC models, and a very large number otherwise (no
regularisation).

The number of local optimisations was increased
when optimising all Fourier coefficients compared to
when optimising only the Fourier coefficients pre-
dicted by theory. At least 3000 local optimisations
were performed in the latter case, while at least 11 000
local optimisations were performed in the former
case. This was to mitigate the increase in the num-
ber of optimised parameters (within the limits of
supercomputing resources available). In both cases,
the best-ranked parameters coming out of the local
optimisations were put through one other round of
local optimisation (except for the SL models with
mean-field and direct stimulation coupling, which
were easier to optimise).

A.3. Perturbation analysis
As an additional investigation into which Fourier
coefficients of the stimulation waveform are key to
enhancing PAC, we perturb individual Fourier coef-
ficients and assess changes in MVL. For each of the
model variants considered, we perturb the npert-best
PAC-enhancing waveforms (obtained from numeric-
ally optimising all the Fourier coefficients), as well
as npert random waveforms. Random waveforms are
generated by drawing Fourier coefficients from a
uniform distribution and re-scaling the coefficients
such that the waveform energy is Ξ. We take npert =
100 for SL models, and npert = 200 for WC models
(more variability in the latter case). We perturb each
Fourier coefficient in turn by adding the perturbation√
Ξ/10, where Ξ is the waveform energy before per-

turbation. We measure the absolute change in PAC as
|MVL−MVL0|, where MVL is the PAC level with the
perturbation, and MVL0 the PAC level in the absence
of perturbation. For each of the model variants con-
sidered, the absolute change in PAC is averaged separ-
ately across the npert-best PAC-enhancing waveforms
and the npert random waveforms.

We also follow the approach above to show thatϕu

does not introduce significant dependences on other
Fourier coefficients than those predicted by theory
in the SL model. The only difference is that we fit a
straight line to the time evolution of θf (first third of
the data discarded to remove transient), and measure

ϕu as its intercept. For each perturbation, we meas-
ure the absolute change inϕu as |ϕu −ϕu0 |, whereϕu0

is the phase shift in the absence of perturbation. We
average absolute differences as in theMVL case above.

A.4. Derivation details for foundational case two
In this section, we derive a relationship between stim-
ulation waveform Fourier coefficients and the amp-
litude of the fast population in the case of direct coup-
ling in the SL model (foundational case two). This
will allow us to gain insights into which Fourier coef-
ficients can have a significant impact on PAC. Using
the approximation for θf mentioned in section 2.1.2
in the Results, the time evolution of ρf is given
by equation (10). In the steady-state, solutions with
PAC will be periodic with period 2π/ωs. Such solu-
tions can therefore be approximated as Fourier series
ρf =

∑Nρ

n=−Nρ
cneniωst truncated at order Nρ. We also

have ρ3f =
∑3Nρ

n=−3Nρ
Πneniωst, where the Fourier coef-

ficientsΠn can be obtained as functions of the coeffi-
cients of ρ. Equation (10) becomes

Nρ∑

n=−Nρ

niωscne
niωst

=−
3Nρ∑

n=−3Nρ

Πne
niωst +

Nρ∑

n=−Nρ

δcne
niωst

+

Nρ∑

n=−Nρ

ks
2
cne

(n+1)iωst +

Nρ∑

n=−Nρ

ks
2
cne

(n−1)iωst

+
Nu∑

n=−Nu
n̸=0

un
2
e(n+r)iωsteiϕu +

Nu∑

n=−Nu
n̸=0

un
2
e(n−r)iωste−iϕu .

Bymanipulating indices and identifying terms corres-
ponding to eniωst, we obtain

0= (δ− niωs) cn +
ks
2
cn−1 +

ks
2
cn+1 −Πn

+
1

2

(
un−re

iϕu + un+re
−iϕu

)
, (14)

with u0 = 0, un = 0 for |n|> Nu, cn = 0 for |n|> Nρ,
and Πn = 0 for |n|> 3Nρ.

Most of the PAC strength is captured by the first
harmonic of ρ, we therefore consider equation (14)
for c0 = ρ0, c1 = ρ1eiθ1 (c−1 = c̄1), and cn = 0 for
|n|> 1. Since Π0 = 6c0c1c−1 + c30, and Π1 = 3c1c20 +
3c−1c21, we get

n= 0 : 0= δc0 +
ks
2
c−1 +

ks
2
c1 − 6c0c1c−1 − c30

+
1

2

(
u−re

iϕu + ure
−iϕu

)
,

n= 1 : 0= (δ− iωs) c1 +
ks
2
c0 − 3c1c

2
0 − 3c−1c

2
1

+
1

2

(
u1−re

iϕu + u1+re
−iϕu

)
.
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These two equations translate to three equations in
ρ0, ρ1, and θ1 given by

0= δρ0 +
ks
2
ρ1 cosθ1 − 6ρ0ρ

2
1 − ρ30 +ℜ

(
ure

−iϕu
)
,

(15)

0= δρ1 cosθ1 +ωsρ1 sinθ1 +
ks
2
ρ0 − 3ρ1ρ

2
0 cosθ1

− 3ρ31 cosθ1 +
1

2
ℜ
(
ūr−1e

iϕu + u1+re
−iϕu

)
,

(16)

0= δρ1 sinθ1 −ωsρ1 cosθ1 − 3ρ1ρ
2
0 sinθ1 − 3ρ31 sinθ1

+
1

2
ℑ
(
ūr−1e

iϕu + u1+re
−iϕu

)
. (17)

We demonstrate numerically through a perturb-
ation approach that the phase shift ϕu (which
also depends on the stimulation waveform) does
not introduce dependences on additional Fourier
coefficients than those explicitly present in these
equations (see figure S.1(A) in supplementary mater-
ial and methodological details in section A.3, per-
turbation of size

√
Ξ/10). We present the insights

obtained from these equations and test predic-
tions arising from them in section 2.1.2 in the
Results.

A.5. Derivation details for general stimulation
coupling in the SLmodel
Wegeneralise the derivation presented in the previous
section to a general stimulation coupling, where the
ARC of the fast population is a separable function of
θf and ρf (see section 2.1.3 in the Results), with a view
to gaining insights into which Fourier coefficients can
have a significant impact on PAC. From equation (1)
with general coupling, the time evolutions of ρf and
θf are given by

ρ̇f =−ρ3f + [δ+ ks cos(ωst)]ρf + g
(
ρf
) Na∑

n=−Na

αne
niθf u(t) ,

θ̇f = ωf + PRC
(
θf,ρf

)
u(t) . (18)

As previously, equation (18) can be approximated by

ρ̇f =−ρ3f + [δ+ ks cos(ωst)]ρf + g
(
ρf
)

×
Na∑

n=−Na

αne
ni(rωst+ϕu)u(t) . (19)

Since ρf is periodic, g(ρf) can be approximated by

a truncated Fourier series g(ρf) =
∑Nγ

n=−Nγ
dneniωst.

Note that each dn depends on the Fourier coefficients

of ρf . Using the Fourier expansions of the various
terms as before, equation (19) becomes

Nρ∑

n=−Nρ

niωscne
niωst

=−
3Nρ∑

n=−3Nρ

Πne
niωst +

Nρ∑

n=−Nρ

δcne
niωst

+

Nρ∑

n=−Nρ

ks
2
cne

(n+1)iωst +

Nρ∑

n=−Nρ

ks
2
cne

(n−1)iωst

+
Na∑

k=−Na

Nγ∑

m=−Nγ

Nu∑

l=−Nu
l̸=0

dmαkule
(kr+l+m)iωstekiϕu .

Using n= kr+ l+m, we have

Na∑

k=−Na

Nγ∑

m=−Nγ

Nu∑

l=−Nu
l ̸=0

dmαkule
(kr+l+m)iωst

=
Na∑

k=−Na

Nγ∑

m=−Nγ

kr+Nu∑

n=kr−Nu
n̸=kr+m

dmαkun−kr−me
niωst.

Bymanipulating indices and identifying terms corres-
ponding to eniωst, we obtain

0= (δ− niωs) cn +
ks
2
cn−1 +

ks
2
cn+1 −Πn

+
Na∑

k=−Na

Nγ∑

m=−Nγ

dmαkun−kr−me
kiϕu , (20)

with u0 = 0, un = 0 for |n|> Nu, cn = 0 for |n|> Nρ,
Πn = 0 for |n|> 3Nρ, an = 0 for |n|> Na, and dn = 0
for |n|> Nγ .

As before, most of the PAC strength is captured by
the first harmonic of ρ with coefficients c0 = ρ0, c1 =
ρ1eiθ1 (c−1 = c̄1). Neglecting the higher order har-
monics of ρ, the coefficients dm will only depend on
c0 and c1. We have

n= 0 : 0= δc0 +
ks
2
c−1 +

ks
2
c1 − 6c0c1c−1 − c30

+
Na∑

k=−Na

Nγ∑

m=−Nγ

dm (c0, c1)αku−kr−me
kiϕu ,

n= 1 : 0= (δ− iωs) c1 +
ks
2
c0 − 3c1c

2
0 − 3c−1c

2
1

+
Na∑

k=−Na

Nγ∑

m=−Nγ

dm (c0, c1)αku1−kr−me
kiϕu .
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These two equations translate to three equations in
ρ0, ρ1, and θ1 given by

0= δρ0 +
ks
2
ρ1 cosθ1 − 6ρ0ρ21 − ρ30 + 2ℜ

(
d̄1 (ρ0,ρ1,θ1)α0u1

)

+ 2
Na∑

k=−Na

Nγ∑

m=−Nγ

ℜ
(
dm (ρ0,ρ1,θ1)αkukr−me

−kiϕu
)

+ 2

Nγ∑

m=1

ℜ
(
d̄m (ρ0,ρ1,θ1)α0um

)
, (21)

0= δρ1 cosθ1 +ωsρ1 sinθ1 +
ks
2
ρ0 − 3ρ1ρ20 cosθ1 − 3ρ31 cosθ1

+

Na∑

k=−Na

Nγ∑

m=−Nγ

ℜ
(
dm (ρ0,ρ1,θ1)αkukr+m−1e

kiϕu
)
,

(22)

0= δρ1 sinθ1 −ωsρ1 cosθ1 − 3ρ1ρ
2
0 sinθ1 − 3ρ31 sinθ1

+
Na∑

k=−Na

Nγ∑

m=−Nγ

ℑ
(
dm (ρ0,ρ1,θ1)αkūkr+m−1e

kiϕu

)
.

(23)

As before, we demonstrate numerically through
a perturbation approach detailed in section A.3
that the phase shift ϕu (which also depends
on the stimulation waveform) does not intro-
duce dependences on additional Fourier coef-
ficients than those explicitly present in these
equations (see figure S.1(C) for g(ρf) = 1, and
figure S.1(D) for g(ρf) = 1/ρf in supplementary
material). We present the insights obtained from
these equations and test predictions arising from
them for two examples of g(ρf) in section 2.1.3 in the
Results.

A.6. Wilson–Cowanmodel
To test whether the predictions obtained from the
SL model may apply in a more biologically realistic
context, we make use of a neural mass model, the
Wilson–Cowan model. The WC model depicts the
interactions of a population of excitatory neurons,
whose activity is denoted by E, and a population of
inhibitory neurons, whose activity is denoted by I
(see figure 6). Two heuristically derived mean-field
equations [43] describe the time evolution of the pop-
ulations’ activities as

{
τ Ė=−E+ f(ηE +wEEE−wIEI+ u(t))

τ İ=−I+ f(ηI +wEIE) ,
(24)

with wPR the weight of the projection from popula-
tion ‘P’ to population ‘R’, ηP the external input to

population ‘P’, u(t) the external stimulation, and τ a
time constant (assumed to be the same for both pop-
ulations). As in [44], the function f is the sigmoid
function

f(x) =
1

1+ e−β(x−1)
,

parametrised by a steepness parameter β. To get PAC
in the absence of stimulation, we follow [44] and
provide the slow input

ηE = c1 cos(ωst)+ c2

to the excitatory population (c1 is set to zero in the
pure gamma case). We consider two examples with
model parameters leading to dynamically distinct
behaviours (strong theta case and pure gamma case,
see section 2.2). The parameters used in the simula-
tions are reported in table 1.

A.7. Obtaining amplitude-response curves in the
Wilson–Cowanmodel
Assessing whether predictions made with the SL
model may hold for the WC model requires the ARC
of the WC model in the examples considered. Thus,
we approximate the ARC of the excitatory population
(the population receiving stimulation) in the strong
theta and pure gamma cases as follows. Our approach
is inspired by [67], and does not rely on the more
complicated definitions of the amplitude response
involving isostables [59, 68–71]. The intuition behind
our approach is as follows. The instantaneous change
in the system’s state due to stimulation will in gen-
eral change both the phase and the amplitude of the
system. In the two-dimensional (E, I) phase space, the
instantaneous change in phase due to a small stimu-
lation at a given point on a trajectory can be obtained
from the component of the shift due to stimulation
that is tangent to the trajectory at the stimulation
point. Conversely, the instantaneous change in amp-
litude is given by the component of the shift due to
stimulation that is normal to the trajectory at the
stimulation point. To obtain the ARC for a periodic
trajectory of interest, we therefore need to compute
the normal component of the change in state due to
stimulation at a number of points along the traject-
ory. These points are chosen such that they span the
full range of phases on the periodic trajectory and
capture the phase dependence of the ARC with suf-
ficient detail (for the amplitude of the periodic orbit
considered).

Table 1. Parameters of the Wilson–Cowan model used in simulations. The strong theta case correspond to figure 7, and the pure gamma
case to figure 8. Parameters of the strong theta case are taken from [44].

Model wEE wIE wEI τ β c1 c2 ωs ηI

strong theta case 2.4 2 2 0.0032 4 0.05 0.385 2π× 8 0
pure gamma case 4.2676 9.2272 1.1640 0.0054 4.1819 0 2.4646 NA 0.3242
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Along the periodic trajectories of interest, we
therefore calculate at regular time intervals the
instantaneous change in the activity of the E popu-
lation due to stimulation ∆Eu. As per equation (24),
during a time step∆t, the instantaneous change in E
due to both stimulation and the dynamics of the sys-
tem is given by

∆Eu+dyn (E, I) =
∆t
τ

[−E+ f(ηE +wEEE−wIEI+ u(t))] ,

while the instantaneous change in E due to the
dynamics alone is given by

∆Edyn (E, I) =
∆t

τ
[−E+ f(ηE +wEEE−wIEI)] .

Thus, we obtain the instantaneous change in the
activity of the E population due to stimulation as

∆Eu (E, I) =∆Eu+dyn −∆Edyn,

∆Eu (E, I) =
∆t

τ
[ f(ηE +wEEE−wIEI+ u)

−f(ηE +wEEE−wIEI)] ,

where we choose u= 0.3 in our numerical estima-
tions of the ARC. Since stimulation is only provided
to the excitatory population (see equation (24)), the
instantaneous change in the activity of the I popula-
tion due to stimulation is∆Iu = 0. At each point con-
sidered along the trajectory, we also get the tangent
vector to the trajectory as a numerical approximation

of
[
Ė
İ

]
using central differences. We then obtain n as

the counter-clockwise unit normal vector to the tan-
gent vector. Finally, we approximate the ARC as the
projection of the change in population activity due to
stimulation onto the normal vector at each point con-
sidered along the trajectory of interest,

ARC=−
[
∆Eu

∆Iu

]
·n,

where the negative sign gives a positive value for
an increase in amplitude. Each point along the tra-
jectory where the change in amplitude was com-
puted is assigned a phase given by θf = ωft, which
allows us to re-parametrise the ARC as a function
of phase. This ARC approximation process is illus-
trated in figure S.6 in the supplementary material.
In the strong theta case, the trajectory considered is
the on-stimulation gamma cycle (see figure S.6(A)).
In the pure gamma case, the significant changes in
dynamics for low and high amplitudes require to con-
sider both the low-amplitude trajectory on stimula-
tion (figure S.6(B1)), and the high-amplitude peri-
odic trajectory (similar on and off stimulation, taken
off stimulation in figure S.6(B2)).
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