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Temporal regularities shape perceptual
decisions and striatal dopamine signals

Matthias Fritsche 1 , Antara Majumdar1, Lauren Strickland1,2,
Samuel Liebana Garcia1, Rafal Bogacz 3 & Armin Lak 1

Perceptual decisions should depend on sensory evidence. However, such
decisions are also influenced by past choices and outcomes. These choice
history biases may reflect advantageous strategies to exploit temporal reg-
ularities of natural environments. However, it is unclear whether and how
observers can adapt their choice history biases to different temporal regula-
rities, to exploit the multitude of temporal correlations that exist in nature.
Here, we show that male mice adapt their perceptual choice history biases to
different temporal regularities of visual stimuli. This adaptation was slow,
evolving over hundreds of trials across several days. It occurred alongside a
fast non-adaptive choice history bias, limited to a few trials. Both fast and slow
trial history effects are well captured by a normative reinforcement learning
algorithm with multi-trial belief states, comprising both current trial sensory
and previous trial memory states. We demonstrate that dorsal striatal dopa-
mine tracks predictions of the model and behavior, suggesting that striatal
dopamine reports reward predictions associated with adaptive choice history
biases. Our results reveal the adaptive nature of perceptual choice history
biases and shed light on their underlying computational principles and neural
correlates.

Accurate perceptual decision-making should rely on currently avail-
able sensory evidence. However, perceptual decisions are also
influenced by factors beyond current sensory evidence, such as past
choices and outcomes. These choice history biases are ubiquitous
across species and sensory modalities1–14. While maladaptive in
standard randomized psychophysical experiments, choice history
biases could be advantageous in natural environments that exhibit
temporal regularities15. Crucially, however, natural environments
exhibit a multitude of different temporal regularities. For instance, a
traffic light that recently turned green can be expected to remain
green for a while, allowing a driver to maintain speed while passing a
junction. Conversely, a yellow traffic light can rapidly change to red,
thus prompting a driver to decelerate. The exploitation of these
various temporal regularities therefore necessitates adaptation of
choices to such sequential patterns. However, the behavioral

signatures, computational principles, and neural mechanisms
underlying such adaptations remain unclear.

Previous studies have demonstrated that humans and rats can
adapt their perceptual choice history biases to different temporal
regularities16–18.Whilemice exhibitflexible visual decision-making3,19–23,
it is not known whether they can adapt their choice history biases to
temporal regularities of the environment. Moreover, the neural
mechanisms underlying such adaptive perceptual choice history bia-
ses remain unknown. Midbrain dopamine neurons, and the corre-
sponding dopamine release in the striatum, play key roles in
learning24–26. Dopamine signals have been shown to shape the ten-
dency to repeat previously rewarded choices, both in perceptual and
value-based decision tasks21,27–30. Yet, the role of striatal dopamine
signals in the adaptation to temporal regularities during perceptual
decision-making remains unknown.

Received: 21 March 2024

Accepted: 5 August 2024

Check for updates

1Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK. 2Institute of Behavioral Neuroscience, University College London,
London, UK. 3MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK. e-mail: Matthias.Fritsche@dpag.ox.ac.uk; Armin.Lak@dpag.ox.ac.uk

Nature Communications |         (2024) 15:7093 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5835-9057
http://orcid.org/0000-0001-5835-9057
http://orcid.org/0000-0001-5835-9057
http://orcid.org/0000-0001-5835-9057
http://orcid.org/0000-0001-5835-9057
http://orcid.org/0000-0002-8994-1661
http://orcid.org/0000-0002-8994-1661
http://orcid.org/0000-0002-8994-1661
http://orcid.org/0000-0002-8994-1661
http://orcid.org/0000-0002-8994-1661
http://orcid.org/0000-0003-1926-5458
http://orcid.org/0000-0003-1926-5458
http://orcid.org/0000-0003-1926-5458
http://orcid.org/0000-0003-1926-5458
http://orcid.org/0000-0003-1926-5458
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51393-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51393-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51393-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51393-8&domain=pdf
mailto:Matthias.Fritsche@dpag.ox.ac.uk
mailto:Armin.Lak@dpag.ox.ac.uk


We trained mice in visual decision-making tasks involving dif-
ferent trial-by-trial temporal regularities, with stimuli likely repeat-
ing, alternating, or varying randomly across trials. We show thatmice
can adapt their perceptual choice history biases to these different
temporal regularities to facilitate successful visually-guided deci-
sions. This adaptation was slow, evolving over hundreds of trials
across several days. It occurred alongside a fast non-adaptive choice
history bias, which was limited to a few trials and not influenced by
temporal regularities. We show that these fast and slow trial history
effects are well captured by a normative reinforcement learning
algorithm with multi-trial belief states, comprising both current trial
sensory and previous trial memory states. We subsequently demon-
strate signatures of this learning in mice that are naive to the
manipulation of temporal regularities, suggesting that this type of
learning is a general phenomenon occurring in perceptual decision-
making. Finally, we establish that dopamine release in the dorsal
striatum follows predictions of the reinforcement learning model,
exhibiting key signatures of learning guided by multi-trial belief
states. Together, our results demonstrate the adaptive nature of
perceptual choice history biases as well as their neural correlates and
cast these biases as the result of a continual learning process to
facilitate decision-making under uncertainty.

Results
Mice adapt perceptual choice history bias to temporal
regularities
We trainedmalemice (n = 10) in a visual decision-making task (Fig. 1a).
In each trial, we presented a grating patch on the left or right side of a
computer screen andmice indicated the grating location by steering a
wheel with their forepaws, receiving water reward for correct
responses. After mice reached expert proficiency on randomized sti-
mulus sequences, we systematically manipulated the trial-by-trial
transition probabilities between successive stimuli across different
days (Fig. 1b). In addition to neutral stimulus sequences in which sti-
mulus location was chosen at random [p(“Repeat”) = 0.5], we exposed
mice to a repeating environment in which stimulus locations were
likely repeated across successive trials [p(“Repeat”) = 0.8], and an
alternating environment in which stimulus locations likely switched
from the previous trial [p(“Repeat”) = 0.2]. Consequently, in the
repeating and alternating environments, the location of the current
stimulus was partially predictable given the knowledge of the previous
trial. Mice successfully mastered the task, exhibiting high sensitivity to
visual stimuli (Fig. 1c; choice accuracies—neutral: 77.91% ± 0.70; alter-
nating: 79.31% ±0.75; repeating: 79.73% ±0.74, mean± SEM). In order
to examine whether mice’s decisions were influenced by the trial
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Fig. 1 | Mice bias visual decisions to exploit temporal regularities of stimulus
sequences. a Schematic of the two-alternative visual decision-making task. Head-
fixed mice reported the location (left/right) of gratings with varying contrasts by
steering a wheel with their forepaws, receiving water reward for correct responses.
Adapted from ref. 21. https://creativecommons.org/licenses/by/4.0/. b Stimulus
sequences of left and right grating presentations followed distinct transition
probabilities (left column), interleaved across different days. In the neutral envir-
onment, stimulus location was determined randomly (top). In the repeating and
alternating environments, stimulus locations were likely repeated (middle) or
alternated (bottom) across successive trials. Right column shows example
sequences in each environment. Different shades of green and pink denote dif-
ferent stimulus contrasts, varying randomly across trials. c Mice exhibit expert
performance, demonstrated by steep psychometric curves with near-perfect per-
formance for easy (high contrast) stimuli (data pooled across environments).
Negative and positive contrasts denote stimuli on the left and right sides, and the
y-axis denotes the probability of a rightward choice. Black data points show the
group average and gray lines indicate individual mice (n = 10 in all panels). The

black line indicates the best-fitting probabilistic choice model (see “Methods”).
Error bars in all panels depict SEMs. d Psychometric curves conditioned on the
previous successful choice direction “left” (green) or “right” (pink). In the repeating
environment, mice exhibit a bias to repeat their previous successful choice as
indicated by a higher probability to respond “right” when the previous response
was “right” rather than “left”. Data points show group averages. Lines show pre-
dictions of the probabilistic choice model. e Difference between choice prob-
abilities conditioned on the previous trial’s successful response (right minus left,
gray area in (d)). Positive y values indicate a tendency to repeat the previous choice.
Data points show group averages. Lines show predictions by the probabilistic
choice model. f Choice accuracy on low contrast trials (0 and 6.25% contrast) in
three different environments. Mice exhibited a gain in performance in the repeat-
ing and alternating over the neutral environment. Gray and black lines depict
individual mice and the group average. For choice accuracy on all trials see Sup-
plementary Fig. 1j. *p <0.05, **p <0.01, two-sided paired t-tests. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-51393-8

Nature Communications |         (2024) 15:7093 2

https://creativecommons.org/licenses/by/4.0


history, we conditioned current choices on the previous trial’s suc-
cessful choice direction (Fig. 1d). In the neutral environment, mice
showed a subtle but consistent tendency to repeat the previous choice
(t(9) = 2.31, p =0.046, two-sided t-test), in line with previous
studies20,21. Importantly, this choice repetition biaswas increased in the
repeating environment and decreased in the alternating environment,
appropriate to exploit the temporal regularities of stimuli (Fig. 1e;
ΔP(“Right”)—Repeating vs. Neutral: t(9) = 2.89, p =0.018; Alternating
vs. Neutral: t(9) = −3.65, p =0.005, two-sided paired t-tests). Further-
more, the influenceof the previous choicewasmostpronouncedwhen
the current stimulus contrast was low, suggesting that mice particu-
larly relied on learned predictions when they were perceptually
uncertain. Importantly, exploiting the predictability in the repeating
and alternating environments enabled mice to increase their choice
accuracy relative to the neutral environment, in which stimuli were not
predictable (Fig. 1f; ΔAccuracy on the most difficult trials [0 and 6.25%
contrast]—Repeating vs. Neutral: t(9) = 5.28,p = 0.0005; Alternating vs.
Neutral: t(9) = 2.58, p =0.03, two-sided paired t-tests; see Supplemen-
tary Fig. 1j for all trials). These findings indicate that mice adapt their
reliance on the previous choice to the temporal regularity of the sti-
mulus sequence, thereby improving their perceptual decisions.

Adaptation of history bias develops over multiple days and is
limited to the previous trial
To further quantify choice history biases beyond the previous trial, we
fit a probabilistic choice regression model with history kernels to
choices in each environment (see “Methods” and Supplementary Fig. 1
for details and parameter recovery analysis). The history kernels
associated with the past seven successful choices confirmed that mice

adapted the weight of the previous (i.e., 1-back) choice to different
temporal regularities (Fig. 2a and b). In contrast, the influence of
choices made more than one trial ago (2- to 7-back) did not differ
across environments, but steadily decayed from an initial attraction by
the 2-back choice towards zero for choices made further in the past,
generally ceasing to be significantly different from baseline after 5
trials (Fig. 2a; two-sided permutation tests, Bonferroni-corrected for
multiple comparisons). Surprisingly, the relatively small 1-back choice
weight in the neutral environment entailed that mice were more likely
to repeat their 2-back choice compared to the more recent 1-back
choice when acting on random stimulus sequences (Fig. 2a, green line;
t(9) = −4.08, p =0.003, two-sided t-test of 1- vs 2-back choice weights;
see also Supplementary Fig. 2 for individual mice). In addition to the
probabilistic choice regression model, we also confirmed this phe-
nomenon using a model-free analysis (Supplementary Fig. 2c,
t(9) = −3.49, p =0.007, two-sided t-test of model-free 1- vs 2-back
choice repetition probability). We will seek to explain this phenom-
enon with normative learning principles below.

In contrast to past successful choices, we found that mice tended
to repeat past incorrect choices largely irrespective of the environ-
ment statistic and the temporal lag, pointing towards a long-term
repetition of errors (Supplementary Fig. 1d).We hypothesized that this
repetition of errors was due to prolonged periods of task disengage-
ment in which mice largely ignored visual stimuli and instead repeat-
edly performed the same choice. We investigated this hypothesis by
identifying engaged and disengaged trials using a modeling frame-
work based on hidden Markov Models31 (HMM, see “Methods” and
Supplementary Fig. 3a–f). When applying the choice history analysis
separately to engaged and disengaged trials, we indeed found that
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Fig. 2 | Mice adapt their previous choice weight to different temporal regula-
rities acrossmultiple days. aHistory kernels comprising the past seven successful
choice weights of the probabilistic choice model (“Methods”; see Supplementary
Fig. 1 for the full set of regression weights and parameter recovery analysis). While
mice are biased by several past choices, only the previous (1-back) choice weight
differs across environments. Error bars in all panels depict SEMs. Dots parallel to
x-axis indicate weights significantly different from baseline, two-sided permutation
test based on shuffled trial history, Bonferroni-corrected, p <0.007. Sample size
was n = 10 mice in panels a, b and h. b 1-back successful choice weight across
environments for each mouse (gray lines) and group average (black). One-sided t-
tests; repeating vs alternating: t(9) = 3.11, p =0.006; repeating vs neutral: t(9) = 1.97,
p =0.04; alternating vs neutral: t(9) = −2.76, p =0.01. c 1-back successful choice
weights estimated on the first, second, and third day of alternating sessions fol-
lowing a neutral session (n =6mice).d Sameas in (c), but for repeating sessions (n=

6 mice). e Choice history kernels for neutral sessions conditioned on the temporal
regularity experienced on the preceding day (solid/circle: repeating; dashed/
square: alternating; n = 9mice in panels e, f and g). f 1-back successful choiceweight
of neutral sessions precededby repeating (circle) or alternating (square) sessions in
eachmouse (gray lines) and across the population (green line). Stars denote results
of one and two-sided t-tests (see main text). g Difference in choice probabilities
conditioned on the previous trial’s successful choice in neutral sessions preceded
by repeating (solid/circle) or alternating (dashed/square) sessions. The differential
impact of the previous regularity is most pronouncedwhen current contrast is low.
h Difference in choice probabilities conditioned on the previous trial’s successful
response split according to whether the previous trial’s stimulus contrast was high
(black) or low (gray).Mice aremore likely to repeat the previous choice when it was
based on a low rather than high contrast stimulus. *p <0.05, **p <0.01. Source data
are provided as a Source Data file.
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mice repeated the previous incorrect choice when they were disen-
gaged but tended to alternate after errors in the engaged state. Con-
sistentwith increased repetition of incorrect choices in the disengaged
state, mice became more likely to repeat their previous choice when
they committed several errors in sequence, indicative of episodes of
task disengagement (Supplementary Fig. 3g). These findings support
the hypothesis that long-term choice repetition after errors is strongly
driven by task disengagement. Due to the low number of “engaged”
error trials in the task (14% ± 0.1 of all trials, mean ± SEM), we focused
on successful choice history kernels in the remainder of our analyses.

Overall, our findings indicate that although mice’s choice history
biases extend over several past trials, mice only adapt the influence of
the previous successful choice to the temporal regularities of the sti-
mulus sequence.

We next sought to investigate how rapidly mice adapted their
previous choice weight to temporal regularities. We fit the probabil-
istic choice model separately to the first, second, and third day of
alternating or repeating sessions following a neutral session. Mice
slowly and gradually shifted their 1-back weight across days, increas-
ingly alternating or repeating their previous choice with each day in
the alternating and repeating environments, respectively (Fig. 2c and
d; F(2,8) = 4.89, p =0.04, repeated-measures ANOVA). To further cor-
roborate this slow adaptation, we analyzed neutral sessions that were
preceded by either a repeating or alternating session (Fig. 2e). Con-
sistent with slow adaptation, mice continued to weigh their previous
choice according to the temporal regularity they experienced on the
previous day, despite the current stimulus sequences being random
(Fig. 2f). That is, mice were biased to repeat their previous choice in a
neutral session preceded by a repeating session (t(8) = 2.69, p =0.01,
one-sided t-test) and biased to alternate their previous choice in a
neutral session preceded by an alternating session (t(8) = −1.93,
p =0.045, one-sided t-test; post-repeating vs. post-alternating:
t(8) = 4.18; p =0.003, two-sided paired t-test). Moreover, mice most
strongly followed the regularity of the previous day when the current
contrast was low (Fig. 2g), suggesting that mice integrate current
sensory evidence with a flexible, but slowly acquired prediction based
on past experience. Unlike the 1-back choice weight, the 2-back choice
weight did not depend on previous exposure to temporal regularities
(Supplementary Fig. 4). Lastly, choice repetition was also modulated
by the previous trial’s stimulus contrast, beingmore pronounced after
successful choices based on low- rather than high contrast stimuli
(t(9) = 4.38, p =0.002, two-sided paired t-test; Fig. 2h), similar to pre-
vious studies9,21,32. This modulation by past stimulus contrasts gradu-
ally decayed over n-back trials (Supplementary Fig. 5). We will seek to
explain this phenomenon with learning principles below.

In summary, the results show that mice’s visual decisions are
biased towards the recent choice history—a bias that decays over the
past seven trials. In contrast to this fast-biasing effect of the most
recent choices, mice slowly adapted their 1-back choice weight to the
temporal regularities of the stimulus sequence over the course of
hundreds of trials. Finally, even in the neutral environment mice
exhibited a conspicuous reliance on their 1-back choice, repeating it
less than the temporally distant 2-back choice.

Multi-trial reinforcement learning explains choice history biases
We next asked whether our findings could be explained by a common
underlying computational principle. It has been proposed that even
well-trained perceptual decision-makers exhibit choice history biases
due to continual updating of choice values21,32. In this framework, an
agent performs the visual decision-making task by combining its belief
about the current stimulus (perception) with stored values for
perception-choice pairs, which can be formalized as a partially obser-
vable Markov decision process (POMDP33,34; Fig. 3a; for a detailed
description see “Methods”). In brief, on a given trial the agent esti-
mates the probabilities PL and PR, denoting the probabilistic belief that

the stimulus is on the left or right side of the screen (Fig. 3e, dark blue).
These estimates are stochastic: they vary across trials even if these
trials involve the same stimulus contrast. The agent then multiplies
these probabilities with stored values qchoice,perception that describe the
average previously obtained reward when making a certain choice
(left/right) upon observing a particular perceptual state (left/right
stimulus). This yields expected values QL and QR, describing the
expected reward for either choice:

QL =
X

i2fL,Rg
Pi �qL,Pi

andQR =
X

i2fL,Rg
Pi � qR,Pi ð1Þ

The agent probabilistically chooses based on these expected
values and a softmax decision rule. Following the choice C (left or
right), the agent observes the outcome r and computes a prediction
error δ by comparing the outcome to the expected value of the chosen
option,QC: δ= r�QC. This prediction error is then used to update the
values associated with the chosen option qC,PL

and qC,PR
by weighing

the prediction error with a learning rate α and the belief PL and PR:

qC,PL
 qC,PL

+α � PL � δ and qC,PR
 qC,PR

+α � PR � δ ð2Þ

The above agent has four free parameters: a sensory noise
parameter, governing the variability of stimulus estimates PL and PR,
decision noise (softmax temperature), as well as learning rates for
positive and negative prediction errors (α + and α�). We refer to this
agent as the single-trial POMDP RL agent, for making a choice the
agent only considers its belief about the current trial’s stimulus
(perception, PL and PR) and the associated stored perception-choice
values qchoice,perception. This agent exhibits several notable features21,32.
First, due to the trial-by-trial updating of perception-choice values, it
learns the visual decision-making task from scratch (Supplementary
Fig. 6a). Second, the trial-by-trial updating of perception-choice
values introduces history dependencies, biasing the agent to repeat
recently rewarded choices (Fig. 3b). Finally, the agent recapitulates
the dependence of the choice bias on the difficulty of the previous
decision: The agent is most likely to repeat a previous successful
choice when it was based on a low contrast stimulus, associated with
low decision confidence (Fig. 2h; Supplementary Fig. 6b). Crucially
however, the agent does not explain choice history biases across
different temporal regularities. In particular, when confronted with
neutral (random) stimulus sequences, it produces a monotonically
decaying history kernel, instead of the observed increase of choice
weights from 1- to 2-back (Fig. 3b, green). Furthermore, in the alter-
nating environment, the agent fails to capture the alternation ten-
dency in the 1-back choice weight. (Fig. 3b, orange). Due to this
failure to adapt to the alternating temporal regularity, the model
underestimates the mice’s behavioral choice accuracy in the alter-
nating environment (Supplementary Fig. 6c). Finally when transi-
tioning from a repeating or alternating environment into the neutral
environment, the agent exhibits no carryover of previously acquired
history dependencies, unlike the substantial carryover seen in the
empirical data (Fig. 3c).

Having established that the single-trial POMDP RL agent is unable
to account for the mice’s adaptation to temporal regularities, we
considered a simple extension to thismodel. In particular, we assumed
that when determining the value of the current choice options, the
agent not only considers its belief about the current stimulus (per-
ception, PL, and PR) and the associated perception-choice values
(Fig. 3d and e, dark blue), but additionally relies on its memory of the
previous trial’s successful choice (Fig. 3d and e, pink;ML andMR). That
is, analogous to computing choice values from a belief about the
current stimulus, the agent combines itsmemory of the previous trial’s
rewarded choice with a separate set of memory-choice values
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(qchoice,memory; Fig. 3d, pink). Thesememory-choice values describe the
expected reward of a particular current choice (left/right) depending
on the rewarded choice of the previous trial. The agent thus computes
the expected reward for current left and right choice options, QL and
QR, as the sum of perception-based and memory-based reward
expectations:

QL =
X

i2fL,Rg
Pi � qL,Pi

+
X

j2fL,Rg
Mj � qL,Mj

and

QR =
X

i2fL,Rg
Pi � qR,Pi

+
X

j2fL,Rg
Mj � qR,Mj

ð3Þ

where P and M represent perceptual and memory belief states,
respectively. Following the choice and outcome, the agent updates the
perception-choice and memory-choice values associated with the
selected choice, using the same learning rate α:

qC,PL
 qC,PL

+α � PL � δ and qC,PR
 qC,PR

+α � PR � δ ð4Þ

qC,ML
 qC,ML

+α � ML � δ and qC,MR
 qC,MR

+α � MR � δ ð5Þ

We refer to this agent as the multi-trial POMDP RL agent, as it
considers both its belief about the current trial’s visual stimulus
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the best fitting multi-trial belief state model. The model captures the character-
istic 1- to 2-back increase in neutral choice weights (green), and the 1-back choice
alternation in the alternating environment (orange). g Choice history kernels in
neutral sessions following a repeating (solid line) or alternating session (dashed
line). The multi-trial model exhibits a carryover of adapted choice history
weights. h Psychometric curves of the mice (grey), and the multi-trial model
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(perception, PL and PR) and its memory of the previous trial’s suc-
cessful choice (ML and MR) when making a choice in the current trial.
Compared to the single-trial agent, the multi-trial agent has only one
additional parameter (memory strength), controlling how strongly the
agent relies on itsmemoryof theprevious choice for current decisions.
Similar to the single-trial agent, the multi-trial agent captured the
mice’s dependence on the current and previous stimulus contrasts
(Fig. 3h and i). Strikingly, however, the agent was also able to capture
the pattern of choice history biases across different temporal regula-
rities. First, for random stimulus sequences, the agent produced the
distinctive decrease in 1- compared to 2-back choice weights (Fig. 3f,
green). Second, the agent accurately captured the mice’s tendency to
alternate the previous choice in the alternating environment (Fig. 3f,
orange), and repeat the previous choice in the repeating environment
(Fig. 3f, blue), while maintaining similar 2- to 7-back choice weights.
Due to its ability to adapt to the alternating regularity, the agent suc-
cessfully captured the mice’s higher empirical choice accuracy in the
alternating compared to the neutral environment (Supplementary
Fig. 6c). Finally, the agent exhibited a substantial carryover of adapted
1-back choice weights when transitioning from the repeating or alter-
nating into the neutral environment (Fig. 3g). Accordingly, the multi-
trial POMDP RL model provided a significantly better fit to the mice’s
choicedata than the single-trialmodel (F(1,41) = 12.63,p =0.001, F-test;
ΔBIC= 8.52). Extending the multi-trial POMDP RL model with expo-
nentially decaying memory, not limited to the 1-back trial, did not
further improve the model fit (F(1,40) = 0.37, p =0.55, F-test; ΔBIC =
−3.41; see “Methods” and Supplementary Fig. 7). Importantly, the fit of
the multi-trial model was achieved by fitting a single set of parameters
to the data of all three temporal regularities, suggesting that the
empirical differences in choice history biases arose from a fixed set of
learning rules that created different choice dynamics depending on
the regularity of the input sequence.

In order to better understandhow themulti-trial agentwas able to
capture our findings, we inspected the trajectories of perception-
choice and memory-choice values across the different environments.
We found thatperception-choicevalues underwent strong trial-by-trial
fluctuations, but remained overall stable across different temporal
regularities (Supplementary Fig. 8a). In contrast, memory-choice
values changed slowly over the course of hundreds of trials, and
diverged in the different environments (Supplementary Fig. 8b and c).
The slow change in memory-choice values was driven by a subtle
reliance on memory, relative to perception, when deciding about the
current choice, thereby leading to small updates of memory-choice
values. Notably, the updating of perception-choice values is relatively
rigid, promoting a tendency to repeat successful choices regardless of
the temporal regularity of the environment. Conversely, memory-
choice values can grow flexibly to either facilitate or counteract the
repetition tendency (Supplementary Fig. 8c). Since memory only
comprised the previous trial’s choice, this facilitating or counteracting
effect was limited to the 1-back choice weight. Importantly, in the
neutral environment, any history dependency attenuates task perfor-
mance. In this environment, the multi-trial agent used its memory to
counteract the 1-back repetition bias introduced by the updating of
perception-choice values, leading to a decreased 1- relative to 2-back
choice weight. The reliance on memory thus allowed the agent to
become more neutral in its reliance on the 1-back choice, thereby
increasing task performance. Finally, the slow trajectory of memory
choice values offers an explanation for why mice did not develop a
pronounced 1-back repetition bias in the repeating environment
(Fig. 3f, blue). Both neutral and alternating environments discourage
the model from repeating the 1-back choice, promoting memory-
choice values in favor of alternations. Since repeating sessions were
interleaved with neutral and alternating sessions, the model therefore
was not given enough time to adapt its memory-choice values to
produce strong 1-back repetition biases during repeating sessions,

resulting in amuted repetition bias, similar to the empirically observed
pattern in mice.

Together, our results demonstrate that mice’s choice history
biases and their slow adaptation to different temporal regularities can
be explained by a normative reinforcement learning algorithm with
multi-trial belief states, comprising both current trial sensory and
previous trial memory states.

Mice naive to temporal regularities exhibit signatures of multi-
trial learning
Mice exhibited a key signature of the multi-trial POMDP RL agent,
displaying a decreased tendency to repeat the 1- relative to 2-back
choice when acting on completely random stimulus sequences. We
wondered whether this reliance on memory was driven by successful
learning of different temporal regularities (Fig. 2a), or whether it is a
general phenomenon observed in animals that did not experience
such temporal regularities. To investigate this question, we analyzed
publicly available choice data of 99 naive mice, which had not
experienced repeating or alternating regularities, and were trained to
expertize with random stimulus sequences in an experimental setup
similar to ours20 (Fig. 4a–c). Similar to the mice of the current study,
mice more strongly repeated their previous successful choice when
the previous contrast was low rather than high (Fig. 4b; t(98) = 10.17,
p < 2.2e-16, two-sided paired t-test), which is an important feature of
confidence-weighted updating of choice values (see Fig. 3i). Crucially,
whilemicewere biased to repeat successful choices of the recent past,
they also exhibited a reduced 1- compared to 2-back choice repetition
bias, replicating this signature of multi-trial learning in mice naive to
temporal regularities (Fig. 4c; t(98) = −3.47, p =0.0008, two-sided
paired t-test). Importantly, our analysis was restricted to the neutral
sessions of the International Brain Laboratory’s (IBL) dataset, i.e.,
before blocks with different stimulus probabilities were introduced
(see “Methods” for details). Conversely, in the IBL’s main task, in which
stimuli were more frequently presented on one side in blocks of 20 to
100 trials, mice exhibited a monotonically decreasing choice history
kernel with a larger 1- compared to 2-back weight (Supplementary
Fig. 9). This is likely driven by the high stimulus repetition probability
within each block lasting for dozens of trials, strongly encouraging
mice to repeat the previous choice35.

Overall, our analysis shows that even without exposure to biased
temporal regularities, mice exhibit a key signature of multi-trial
learning, suggesting that learning based on multi-trial belief states is a
general strategy in visual decision-making of mice.

Reduction in previous choice weight is not due to sensory
adaptation
The decreased tendency to repeat the 1- relative to 2-back choice and
the increased probability to repeat decisions based on low sensory
evidence are key signatures of the multi-trial POMDP RL agent. How-
ever, both phenomena could also be the signature of spatially-specific
sensory adaptation. It is well known that the visual system adapts to
visual input, typically leading to reducedneural responses for repeated
or prolonged stimulus presentations36–44, and inducing repulsive bia-
ses in behavior45–49. Neural adaptation to high contrast is believed to
reduce perceptual sensitivity to subsequently presented low contrast
stimuli50,51. If high contrast stimuli indeed reduce the perceptual sen-
sitivity to subsequent stimuli, this may explain the reduced bias to
report a grating presented at the same location as the previous grating
(i.e., repeating the previous successful choice), and would entail a
particularly strong reduction following gratings with the highest con-
trast. Together with a monotonically decaying choice repetition bias
(Fig. 4d, blue), a short-lived sensory adaptation bias (Fig. 4d, red) may
thus mimic both signatures supporting multi-trial reinforcement
learning (Fig. 4d, striped). In order to investigate this possibility, we
exploited a crucial necessary condition of the adaptation hypothesis,
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namely that sensory adaptation needs to be spatially-specific, reducing
perceptual sensitivity for subsequent stimuli presented at the same
location as the previous stimulus, but less strongly when the stimulus
location changes. To test this, we performed a new experiment in
which we presented small gratings in one of the four corners of the
screen.Mice reportedwhether the stimuluswas on the left or right side
of the screen, regardless of its altitude. This experiment thereby
allowed us tomanipulatewhether successive stimuli werepresented at
the same or different spatial location (lower and upper visual field),
even when those stimuli required the same choice (left or right;
Fig. 4e). Crucially, the POMDP RL framework, which posits confidence-
dependent updating of choice values, predicts an effect of previous
contrast, with an increased probability to repeat successful choices
based on low sensory evidence (see Fig. 3h), but no influence of
whether the previous and current stimuli were presented at the same
or different spatial locations (Fig. 4h). Conversely, spatially-specific
sensory adaptation predicts that the probability to repeat the previous

successful choice is reduced when previous and current stimuli are
presented at the same location, and relatively increased when the
location changes, due to a release from adaptation—an effect that
should be particularly pronounced when the previous contrast was
high (Fig. 4g). Mice (n = 5) successfully reported the horizontal loca-
tion of the current stimulus (left or right), both when stimuli were
presented at a low or high vertical location (Fig. 4f). Furthermore, we
verified that mice did not make substantial eye movements towards
the visual stimuli (Supplementary Fig. 10). Crucially, mice showed an
increased tendency to repeat their previous successful choice when
the previous contrast was low (F(1,4) = 30.06, p =0.005), but no effect
of a change in stimulus altitude (F(1,4) = 0.24, p =0.65) and no inter-
action between changes in stimulus altitude and contrast
(F(1,4,) = 0.51, p =0.51, repeated-measures ANOVA). A Bayes factor
analysis revealed moderate evidence against the hypothesis that a
change in spatial location from a previous high contrast stimulus leads
to an increased repetition bias (BF10 = 0.25), a central prediction of the
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Fig. 4 | Naive mice exhibit a signature of multi-trial learning, which is not
explained by spatially-specific sensory adaptation. a Mice performed a visual
decision-making task, similar to the one of the current study20 (n = 99, (a–c)). We
exclusively analyzed sessions in which mice had mastered the task with random
stimulus sequences. Mice showed high sensitivity to the current stimulus contrast.
Gray lines show individualmice, whereasblack datapoints show the group average.
See also Fig. 1c. b Difference in choice probabilities conditioned on the previous
trial’s successful response, split according to whether the previous trial’s stimulus
contrast was high (black) or low (gray). Mice are more likely to repeat the previous
choice when it was based on a low rather than high contrast stimulus. In all
empirical panels (b, c, f, and i) data points show the group average and error bars
depict SEMs. c History kernel comprising the past seven successful choice weights
of the probabilistic choice model (“Methods”). While naive mice generally tended
to repeat their most recent choices, they exhibited a reduced 1- relative to 2-back
choiceweight (see inset, two-sidedpaired t-test, t(98) = −3.47, p =0.0008), which is
a key signature of our multi-trial POMDP RL model. d Schematic of how a mono-
tonically decaying choice repetition bias (blue) together with a short-lived sensory
adaptation bias (red) could lead to the empirically observed choice history kernel
(striped), explaining both the 1- to 2-back increase in choice weights and the
modulation of choice weights by previous contrast. e Schematic of the altered
visual decision-making task. Stimuli were presented at one of four spatial locations,
unlike the main task with two stimulus locations. Mice had to report whether the

stimulus was on the left or right side of the screen. Successive stimuli could thus be
presented at the same (green arrow) or different spatial location (pink arrow), even
when those stimuli required the same choice (here left). f Mice (n = 5) exhibit
expert-level task performance. We expressed the probability of a rightward deci-
sion (y-axis) as a function of the signed stimulus contrast (x-axis). Positive contrasts
denote stimuli on the right side. Mice showed a high sensitivity to visual stimuli,
regardless of whether stimuli were presented low (yellow) or high (purple) in their
visual field. g Predictions of the spatially-specific sensory adaptation hypothesis.
Mice should be less likely to repeat the previous successful choice (y-axis) when
successive stimuli are presented at the same spatial location (x-axis, green), rather
than at the different spatial location in the same hemifield (x-axis, pink). This effect
should be particularly pronounced when the previous stimulus had high contrast
(left subpanel), serving as a potent adapter. h Predictions of the POMDP RL model
with confidence-weighted value updates. Mice should be more likely to repeat a
previously successful choice when it was based on a low rather than high contrast
stimulus (left vs right subpanels), but this effect should not vary with changes in
spatial location (x-axis, green vs pink). i The mice’s (n = 5) choice repetition prob-
abilities are in line with the predictions of the POMDP RL model, and inconsistent
with spatially-specific sensory adaptation. Grey thin lines depict individual mice.
Repeated-measures ANOVA. **p <0.01, ***p <0.001. Source data are provided as a
Source Data file.
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sensory adaptation hypothesis. Our results are thus inconsistent with
sensory adaptation, and point towards confidence-dependent updat-
ing of choice values underlying choice repetition. Furthermore, the
decreased tendency to repeat the 1- relative to 2-back choice could not
be explained bymice pursuing two distinct decision-making strategies
on distinct sets of trials, either alternating the previous choice while
acting largely independent of the longer-termhistoryor repeating past
choices monotonically weighted by their n-back position. Instead, the
1- to 2-back increase in choice weight was pervasive, whenever mice
were engaged with the decision-making task (Supplementary Fig. 11).

Striatal dopamine tracks behavioral choice history biases
Finally, we sought to elucidate the neural bases of adaptive choice
history biases. Central to the hypothesis of reinforcement learning
underlying choice history biases is that mice compute reward predic-
tions and reward prediction errors whilemaking perceptual decisions.
The activity of midbrain dopamine neurons and the resulting dopa-
mine release in the striatum are strongly implicated in this
process21,52–55. A key target area implicated in learning of stimulus-
choice associations is the dorsolateral striatum56 (DLS). We measured
dopamine release in the DLS, using ultra-fast dopamine sensors57

(GRABDA2m) in combination with fiber photometry (Fig. 5a), in order to
compare striatal dopamine signals with our multi-trial POMDP
RL model.

We measured dopamine release in the DLS while mice (n = 6)
performed our visual decision-making task (Fig. 1a). Since we found

signatures of adaptation to trial history even in the neutral (random)
environment (see Fig. 4a–c),we focusedonmeasuring choicebehavior
and dopamine release using random stimulus sequences, maximizing
the number of trials in this condition (n = 11,931 trials). Mice success-
fully mastered the decision-making task (Fig. 5b) and exhibited a
similar choice history kernel to previous experiments (Fig. 5f; c.f.
Figs. 2a and 4c). Importantly, they expressed the characteristic
increase in choice weights from the 1- to 2-back trial (Fig. 5f, inset;
t(5) = -2.73, p =0.02, one-sided t-test), which is a key distinguishing
feature between the multi- and single-trial models. Dopamine release
in the DLS was strongly modulated both at the time of stimulus and
outcome (Fig. 5c–e and Supplementary Fig. 12f). Following the stimu-
lus presentation, dopamine increased with stimulus contrast
(F(1.58,7.92) = 16.995, p =0.002, repeated-measures ANOVA; Fig. 5d
and e), largely independent of the stimulus side relative to the recor-
ded hemisphere (F(1,5) = 0.69, p = 0.44, repeated-measures ANOVA;
Supplementary Fig. 12b). Conversely, following reward delivery
dopamine negatively scaled with stimulus contrast (F(1.6,8) = 117.34,
p = 1.8 × 10−6, repeated-measures ANOVA), yielding the highest dopa-
mine release for rewarded zero contrast trials (Supplementary Fig. 12f
and g). These signals are consistent with dopamine encoding the
expected reward value during stimulus processing, for which a high
contrast stimulus predicts a highly certain reward (model Q; Fig. 5g,
black line), anddopamine encoding the rewardprediction error during
outcome (model δ), for which the maximal surprise occurs when
receiving a reward given a maximally uncertain stimulus. Further
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Fig. 5 | Striatal dopamine tracks the expected reward value of the multi-trial
POMDP RL model. a Schematic of fiber photometry in the dorsolateral striatum
(DLS), imaging dopamine release using ultra-fast dopamine sensors (GRABDA2m).
b Psychometric curves of mice (n = 6) during the dopamine recording experiment.
Gray lines show individualmice, whereasblack datapoints show the group average.
Error bars in all panels depict SEMs. c Trial-by-trial dopamine responses from all
sessions of an example animal, aligned to stimulus onset (white dashed line) and
sorted by trial type (left column) and outcome time (black dots). d Group-average
dopamine response (n = 6 mice, d, e, f, and i), aligned to stimulus onset (gray
dashed line), split by stimulus contrast (gray to black; correct trials only). Gray
shaded area indicates the stimulus time period over which we averaged stimulus
responses (e and i; excluding timepoints after rewarddelivery).eAverage stimulus-
evoked dopamine responses as a function of current absolute contrast (rewarded
trials only; averaged over gray shaded area in (d)). f History kernel of the prob-
abilistic choicemodelfit tomicedata (solid line) and thepredictedhistory kernel of
themulti-trial POMDPRLmodel (dashed line).Mice exhibit a higher 2- compared to
1-back choice weight (inset, one-sided t-test, t(5) = −2.73, p =0.02). Shaded region
depicts SEMs.g Expected reward valueQ (black) of themulti-trial POMDPRLmodel

as a function of current contrast (absolute value, i.e., independent of its L or R
position), separately when the current stimulus is on the same (repeat, blue) or
opposite side (alternate, orange) as the 2-back stimulus (current and previous
rewarded trials only).Q reflects the expected value before the choice, computed by
summing QL and QR weighted by the probability of making a left and right choice.
ForQC, the expected value after the choice, see Supplementary Fig. 13.hDifference
in Q between repetitions and alternations of stimulus side (ΔQ) as a function of
n-back trial (current and previous rewarded trials only). The single-trial (blue) and
multi-trial models (pink) make opposite predictions about the difference between
1- and 2-back trials.While the single-trialmodel predicts a higherΔDA for the 1-back
versus to 2-back trial, the multi-trial model predicts a higher ΔDA for the 2- com-
pared to 1-back trial. i Difference in stimulus-evoked dopamine responses between
repetitions and alternations of stimulus side (ΔDA) as a function of n-back trial
(current and previous rewarded trials only). Mice exhibit a higher 2- compared to
1-back ΔDA (inset, two-sided t-test, t(5) = 3.51, p =0.017). 1- and 2-back ΔDA are not
significantly different from zero (n.s., two-sided t-tests), respectively. Source data
are provided as a Source Data file.
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evidence supporting the hypothesis that dopamine responses during
the stimulus period reflected the expected reward valueQ comes from
the observation that dopamine scaled with the uncertainty of the
previous stimulus, consistent with the model predictions (Supple-
mentary Fig. 12c and d).

In order to examine effects of trial history on dopamine respon-
ses, we focused on dopamine release during the stimulus period,
which unlike reward-related responses were not complicated by an
overlap of stimulus and reward responses caused by GRABDA sensor
dynamics (Supplementary Fig. 12f). An important feature of the
POMDP RL model is that the expected reward value Q not only
depends on the contrast of the current stimulus, but also on the his-
tory of past choices and outcomes. In particular, the expected reward
is higher if the current stimulus is presented on the same rather than
theopposite side aspreviously rewarded trials (Fig. 5g, blue vs orange),
promoting the behavioral choice repetition bias. Crucially however,
since the multi-trial agent uses its memory of the previous rewarded
choice to reduce the 1-back repetition bias in the neutral environment,
the difference in expected reward between stimulus repetitions and
alternations (ΔQ) is larger for the 2- compared to 1-back trial,
mimicking the empirically observed choice history kernel (Fig. 5h,
pink; c.f. Fig. 5f). This is in contrast to the single-trial agent, which
predicts a larger ΔQ for the 1- compared to 2-back trial (Fig. 5h, blue).
To test whether stimulus-evoked dopamine tracked the multi-trial
agent’s dynamic of ΔQ across trials, we analogously computed the
difference in stimulus-evoked dopamine between stimulus repetitions
and alternations of the n-back rewarded side (ΔDA, Fig. 5i). We found
that dopamine responses indeed tracked the multi-trial model’s pre-
dictions of ΔQ: the dopamine response to the current stimulus was
larger when the current stimulus was a repetition of the 2-back com-
pared to the 1-back trial (ΔDA, 2- minus 1-back: t(5) = 3.51, p =0.017,
two-sided t-test; p = 0.018, two-sided permutation test based on
shuffled trial history), and gradually decayed across further n-back
trials (Fig. 5i). Importantly, this dependence of dopamine on stimulus
repetition or alternation of the 1- or 2-back trial was not evident during
the pre-stimulus period of the current trial (ΔDA, 2- minus 1-back:
t(5) = −0.30, p = 0.78, two-sided t-test; Supplementary Fig. 12e), and
thus was not a carryover of residual dopamine from previous trials.
Given the fast response times of mice and sensor dynamics, it was not
possible to clearly separate dopamine signals before and after the
current choice. However, the pattern of ΔQ (Fig. 5g and h) holds
regardless of whether it is calculated before or after the choice (Sup-
plementary Fig. 13), thus making similar predictions for pre-outcome
dopamine signals. We note that while the multi-trial agent exhibits a
near-zero, but slightly positive 1-back ΔQ, we observed a numerically
negative 1-back ΔDA, which was not statistically significantly different
from zero (t(5) = −2.20, p =0.08, two-sided t-test). We speculate that
such a negative 1-back ΔDA in the DLS could be driven by an unequal
weighting of reward predictions, calculated based on the perceptual
andmemory components of themulti-trial belief state. Indeed, reward
expectations based solely on memory exhibit a negative 1-back ΔDA,
andwe found that an overweighting of thismemory-based expectation
could approximate the empirically observed DA release (Supplemen-
tary Fig. 14). Although speculative, we therefore consider it possible
that DLS DA release might report a reward expectation that is slightly
skewed towards memory-based expectations. It is possible that other
striatal regions such as DMS, which receives more input from visual
cortical areas58,59, might more strongly encode reward expectations
based on perception. More experiments will be necessary to investi-
gate this hypothesis.

Together, our results indicate that pre-outcome dopamine in the
DLS closely tracks the expected reward value of the multi-trial POMDP
RL agent. Given dopamine’s prominent role in striatal neural plasticity
and learning, we speculate that it may thus play a role in mediating
adaptive choice history biases in perceptual decisions.

Discussion
Our world presents a multitude of temporal regularities, allowing
observers to predict the future from the past. Here, we show thatmice
can exploit such regularities to improve their perceptual decisions by
flexibly adapting their reliance on past choices to the temporal struc-
ture of the stimulus sequence. We find that this adaptation of per-
ceptual choice history biases is well captured by a normative
reinforcement learning algorithm with multi-trial belief states, com-
prising both current trial sensory and previous trial memory states.
Moreover, we show that learning guided by multi-trial belief states
occurs even in mice that never experienced the manipulation of tem-
poral regularities, suggesting that multi-trial learning may be a default
strategy when making perceptually uncertain decisions. Lastly, we
demonstrate that dopamine release in the DLS closely tracks beha-
vioral biases and reward predictions in the multi-trial reinforcement
learning model, pointing towards a plausible teaching signal linked to
the learning and exploitation of temporal regularities in perceptual
decisions.

It has been previously proposed that perceptual choice history
biases can be explained by reinforcement learning mechanisms that
are continually engaged to adjust perceptual decisions, even in highly
trained decision-makers32. In the POMDP RL framework, observers
continually evaluate and update the values of different choice options
given their sensory confidence, choice, and feedback33,34,52. This fra-
mework has been fruitful in explaining the emergence of choice his-
tory biases, their dependence on previous sensory confidence, and the
adaptation of choices to changes in reward value21. However, it does
not explain how mice adapt their choice history biases to different
temporal regularities, and in particular how mice learn to alternate
from a previously rewarded choice when stimulus sequences favor
alternations, as demonstrated in the current study. To account for
these results, we developed a simple extension to the previous model:
Mice assess the value of current choice options not only based on
current sensory stimuli (perception-choice values) but also based on a
memory of the previous trial’s rewarded choice (memory-choice
values). While the trial-by-trial updating of perception-choice values
leads to choice repetition, the concurrent learning of memory-choice
values can attenuate or increase the tendency to repeat, allowing for a
more flexible weighing of the previous trial. This minimal extension to
the previous model explains several surprising patterns in our data.
First, mice only adapt the influence of the previous choice across dif-
ferent temporal regularities, while similarly repeating choices of tem-
porally more distant trials. Second, in contrast to the fast timescale of
choice history biases, swiftly decaying over the past seven trials, the
adaptation of the 1-back choiceweight to temporal regularities is slow,
developing over hundreds of trials. Third, when acting on random
stimulus sequencesmicemore strongly repeat the 2-back compared to
1-back choice. Strikingly, all three empirical observations are captured
by a model with a fixed set of parameters governing trial-by-trial
learning in environments with different temporal regularities. This
suggests that the empirical patterns arise froman interaction of a fixed
set of learning rules with the temporal structure of the stimulus
sequences.

Past perceptual decision-making studies in humans have shown
similar reduced or muted 1- relative to 2-back choice weights for ran-
dom stimulus sequences10,60. Moreover, similar reduced 1- relative to
2-back choice weights have been observed outside the perceptual
domain in the context of a competitive matching pennies game in
monkeys61. Similar to perceptual decision-making about random sti-
mulus sequences, the optimal strategy in the matching pennies game
is to make history-independent decisions. Instead, monkeys tend to
repeat past decisions of their opponent - a pattern that can be
exploited to their disadvantage andwhich the authors explainedwith a
reinforcement learningmodel. Intriguingly, however,monkeys appear
to be able to downregulate the repetition tendency of the 1-back
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choice specifically, thereby becoming less exploitable—a phenomenon
that can be readily accounted for by the multi-trial reinforcement
learning model. Together, these findings suggest that similar multi-
trial learning strategies might hold across decision-making contexts
and species.

At the neural level, we found that dopamine release in the DLS
closely tracks behavioral biases and reward predictions of the multi-
trial reinforcement learning model. The activity of midbrain dopa-
mine neurons is thought to play a pivotal role in learning from past
rewards, encoding predicted value prior to outcome, and reward
prediction error after outcome24,62. Similarly, during perceptual
decisions, dopamine signals encode predicted values and reward
prediction errors graded by both reward value and sensory con-
fidence and are causally involved in learning from past perceptual
decisions21,52–55,63,64. In consonance, we found that dopamine release
in the DLS is positively scaled with the current stimulus contrast
during the stimulus period, in line with signaling predicted value, but
negatively scaled during reward processing, in line with encoding a
reward prediction error. Trial-by-trial changes in these dopamine
signals closely tracked behavioral biases and reward predictions of
the multi-trial reinforcement learning model. Our finding that
dopamine release not only reports a perceptual prediction, but also
memory-based predictions is in line with past research indicating
that midbrain dopamine neurons are sensitive to contextual infor-
mation signaled by trial history65. Importantly, dopaminergic path-
ways in the dorsal striatum have been proposed to be involved in
choice selection66–68, and transient stimulation of dorsal striatal D1
neurons mimicked an additive change in choice values during
decision-making69. Therefore, the history-dependent dopamine
release in the DLS might be directly involved in promoting the
adaptive behavioral choice history biases observed in the current
study. Future studies that causally manipulate striatal dopamine
release will be necessary to test this hypothesis.

We demonstrate that crucial signatures of choice history biases
observed in the current study generalize across datasets, such as those
by the International Brain Laboratory19,20 (IBL), which uses a similar
experimental setup. However, our manipulation of temporal regula-
rities diverges fromblock switches used in the additional experimental
manipulations of the IBL in important ways. While the full task of the
IBL involves blockwise (i.e., average of 50 trials) manipulations of sti-
mulus priors, the current study manipulates the local transition
probability between successive trials, while keeping longer-term sti-
mulus statistics balanced, therefore presenting a more subtle manip-
ulation of input statistics. In particular, the use of alternating stimulus
sequences enabled us to test whether mice learn to alternate from a
previously rewarded choice, demonstrating thatmice exhibit a flexible
dependence on the previous trial given the prevailing temporal
regularity.

The current study, while providing important insights into beha-
vioral, computational, and neural bases of choice history biases, is not
without limitations. First, while the multi-trial reinforcement learning
model provides a parsimonious account of how mice rely on past
rewarded choices, it does not adequately capture choice biases fol-
lowing unrewarded (error) trials. In particular, mice exhibited a bias to
repeat unrewarded choices with similar strength across 1- to 7-back
trials, indicating a slowly fluctuating tendency to repeat the same
unrewarded choice (Supplementary Fig. 1d). This tendency is not
recapitulated by our model (Supplementary Fig. 15), and differs from
human behavior, which is characterized by choice alternation after
errors60. It likely reflects both session-by-session changes in history-
independent response biases as well as periods of task disengagement
in whichmice ignore stimuli and instead repeatedly perform the same
choice31. Indeed, we found that mice repeated the previous incorrect
choicewhen theyweredisengaged, but tended to alternate after errors
when engaged with the task (Supplementary Fig. 3). Thus, when

focusing our analyses on periods of high task engagement, mice
treated past incorrect trials more similar to humans and more con-
sistent with a reinforcement learning agent, which predicts choice
alternation following an unrewarded trial. However, the low propor-
tion of error trials and their heterogeneity complicate a straightfor-
ward assessment of post-error responses. Nevertheless, they will be an
important subject of investigation in future experimental and theore-
tical work.

Second, our conclusions are likely limited to adaptive history
biases in settings involving trial-by-trial feedback. The presence of
feedback, common in animal research, enables observers to learn
most from maximally uncertain events, which is crucial for explain-
ing how low decision confidence leads to strong choice repetition
biases observed in this and previous datasets9,20,21,32. However, choice
history biases occur in a wide range of experimental paradigms,
many of which do not provide trial-by-trial feedback1,70. In the
absence of feedback, human observers are more likely to repeat a
previous choice when it was associated with high rather than low
decision confidence10,16,70–72, opposite to the current and past find-
ings, and consistent with Bayesian models of choice history
biases73–76. Thus, there are multiple ways through which observers
can leverage the past to facilitate future behavior, and the resulting
perceptual choice history biases are likely subserved by a variety of
different computations, such as learning32 and inference77. As such,
while our model offers an explanation for perceptual choice history
biases and their dopaminergic signatures, it does not necessarily
exclude other theoretical frameworks.

Third, since we found signatures of adaptation to trial history
even in the neutral (random) environment (see Fig. 4a–c), we focused
on measuring choice behavior and dopamine release using random
stimulus sequences, maximizing the number of trials in this condition.
Importantly,wediscovered that the choicehistorykernel in theneutral
environment exhibited an important diagnostic to distinguish
between the single- and multi-trial reinforcement learning models,
namely the increase in 1- to 2-back choice history weight, which was
recapitulated by the dopamine data. Nevertheless, it would be inter-
esting to record dopamine release also during repeating and alter-
nating sessions, and to investigate whether dopamine tracks the slow
adaptation to the statistics of the environment across hundreds of
trials.

Our results demonstrate that mice can flexibly adapt their choice
history biases to different regularities of stimulus sequences in a visual
decision-making paradigm. We show that a simple model-free POMDP
RL algorithm based on multi-trial belief states accounts for the
observed adaptive history biases and that striatal dopamine release
closely follows the reward predictions of this algorithm. Our results
suggest that choice history biases arise from continual learning that
enables animals to exploit the temporal structure of the world to
facilitate successful behavior.

Methods
Animals
The data for all experiments were collected from a total of 17 male
C57BL/6J mice from Charles River UK, aged 10–30 weeks. The data of
the behavioral experiment manipulating temporal regularities were
collected from 10 mice. Of these mice, 3 animals also completed the
experiment investigating sensory adaptation. Furthermore, we con-
ducted dopamine recordings during perceptual decision-making in 6
mice. One of these mice also completed the sensory adaptation
experiment. One mouse participated only in the sensory adaptation
experiment. Mice were kept on a 12 h dark/light cycle, with an
ambient temperature of 20–24° Celsius, and 40% humidity. All
experiments were conducted according to the UK Animals Scientific
Procedures Act (1986) under appropriate project and personal
licenses.
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Surgery
Mice were implanted with a custom metal head plate to enable head
fixation. To this end, animals were anesthetized with isoflurane and
kept on a heating pad. Hair overlying the skull was shaved and the skin
and the muscles over the central part of the skull were removed. The
skull was thoroughly washed with saline, followed by cleaning with a
sterile cortexbuffer. Theheadplatewas attached to theboneposterior
to bregma using dental cement (Super-Bond C&B; Sun Medical).

For dopamine recording experiments, after attaching the head-
plate, we made a craniotomy over the left or right DLS. We injected
460nL of diluted viral construct (pAAV-hsyn-GRABDA2m) into the left
or right DLS (AP: +0.5mm from bregma; ML: ±2.5mm from midline;
DV: 2.8mm from dura). We implanted an optical fiber (200mm,
Neurophotometrics Ltd) over the DLS, with the tip 0.3mm above the
injection site. The fiber was secured to the head plate and skull using
dental cement.

Materials and apparatus
Mice were trained on a standardized behavioral rig, consisting of an
LCD screen (9.7” diagonal), a custom 3D-printed mouse holder, and a
head bar fixation clamp to hold a mouse such that its forepaws rested
on a steering wheel19,20. Silicone tubing controlled by a pinch valve was
used to deliver water rewards to the mouse. The general structure of
the rig was constructed from Thorlabs parts and was placed inside an
acoustical cabinet. The experimentswerecontrolled by freely available
custom-made software78, written in MATLAB (Mathworks). Data ana-
lyses were performed with custom-made software written in Matlab
2020b, R (version 3.6.3), and Python 3.7. The GLM-HMM analysis was
performedwith the openly available glmhmmpackage (https://github.
com/irisstone/glmhmm).

Visual decision-making task
Behavioral training in the visual decision-making task started at least
5 days after the surgery. Animals were handled and acclimatized to
head fixation for at least 3 days, and then trained in a 2-alternative
forced choice visual detection task19. After mice kept the wheel still for
at least 0.7 to 0.8 s, a sinusoidal grating stimulus of varying contrast
appeared on either the left or right side of the screen (±35° azimuth, 0°
altitude). Grating stimuli had a fixed vertical orientation, were wind-
owed by a Gaussian envelope (3.5° s.d.), and had a spatial frequency of
0.19 cycles/° with a random spatial phase. Concomitant to the
appearance of the visual stimulus, a brief tone was played to indicate
that the trial had started (0.1 s, 5 kHz). Mice were able to move the
grating stimulus on the monitor by turning a wheel located beneath
their forepaws. If mice correctly moved the stimulus 35° to the center
of the screen, they immediately received a water reward (2–3μL).
Conversely, if mice incorrectly moved the stimulus 35° towards the
periphery or failed to reach either threshold within 60 s a noise burst
was played for 0.5 s and they received a timeout of 2 s. The inter-trial
interval was randomly sampled from a uniform distribution between
0.5 and 1 s (1 and 3 s in the dopamine recording experiment). In the
initial days of training, only 100% contrast stimuli were presented.
Stimuli with lower contrasts were gradually introduced after mice
exhibited sufficiently accurate performance on 100% contrast trials
(>70% correct). During this training period, incorrect responses on
easy trials (contrast ≥ 50%) were followed by “repeat” trials, in which
the previous stimulus location was repeated. The full task included six
contrast levels (100, 50, 25, 12.5, 6.25 and 0% contrast). Once mice
reached stablebehavioron the full task, repeat trialswere switchedoff,
and mice proceeded to the main experiment.

In the main experiment (Figs. 1–3), we investigated whether mice
adapt their choice history biases to temporal regularities. To this end,
we manipulated the transitional probabilities between successive sti-
mulus locations (left or right) across experimental sessions.

Specifically, the probability of a repetition was defined as follows:

P stimulus repetitionð Þ= 1� P stimulus alternationð Þ
=Pðstimulusn = leftjstimulusn�1 = leftÞ
=Pðstimulusn = rightjstimulusn�1 = rightÞ

ð6Þ

where n indexes trials. The repetition probability was held constant
within each session but varied across experimental sessions, which
were run on different days. In the Neutral environment, the repetition
probability was set to 0.5, yielding entirely random stimulus sequen-
ces. In the Repeating and Alternating environments, the repetition
probability was set to 0.8 and 0.2, respectively. For eight out of ten
mice, the order of environments was pseudo-randomized such that
three consecutive Repeating or Alternating sessions were interleaved
with twoconsecutiveNeutral sessions. For the remaining twomice, the
environments were presented in random order.

Experimental sessions in which mice showed a high level of dis-
engagement from the task were excluded from further analysis, based
on the following criteria. We fit a psychometric curve to each session’s
data, using a maximum likelihood procedure:

P ‘‘Right’’ð Þ= γ + 1� γ � λð ÞFðc;α,β Þ ð7Þ

where P(“Right”) describes the mouse’s probability to give a rightward
response, F is the logistic function, c is the stimulus contrast, γ and λ
denote the right and left lapse rates, α is the bias and β is the contrast
threshold. We excluded sessions in which the absolute bias was larger
than 0.16, or either left or right lapse rates exceeded 0.2. We further
excluded sessions in which the choice accuracy on easy 100% contrast
trials was lower than 80%. This led to the exclusion of 56 out of
345 sessions (16%). Finally, we excluded trials in which the response
time was longer than 12 s, thereby excluding 1507 out of 128,490
trials (1.2%).

Probabilistic choice model
In order to quantify the mice’s choice history biases across the three
environments with different temporal regularities, we fitted a prob-
abilistic choicemodel to the responses of eachmouse. In particular,we
modeled the probability of the mouse making a rightward choice as a
weighted sum of the current trial’s sensory evidence, the successful
and unsuccessful response directions of the past seven trials, and a
general bias term, passed through a logistic link function:

P ‘‘Right’’ð Þ= 1
1 + e�z

ð8Þ

where z is thedecision variable,which is computed for each trial i in the
following way:

z ið Þ=
X
c

wcIc ið Þ+
X7
n= 1

w+
n r

+ i� nð Þ+w�n r� i� nð Þ+w0 ð9Þ

wc is the coefficient associated with contrast Ic and Ic is an indicator
function, which is 1 if contrast c was presented on trial i and 0 other-
wise. Coefficientsw+

n andw�n weigh the influenceof the correct (+) and
incorrect (−) choices of the past seven trials, denoted by r + and r�,
respectively.Here, r + was−1 if the correct n-backchoicewas left, +1 if it
was right, and zero if the n-back choice was incorrect. Likewise, r� was
−1 if the incorrect n-back choice was left, +1 if it was right, and zero if
the n-back choicewas correct.w0 is a constant representing the overall
bias of the mouse. We chose to model a temporal horizon of the past
seven trials, since the autocorrelation in the stimulus sequences
introduced by the transition probabilities decayed over this timeframe
and were negligible beyond seven trials back (see Supplementary
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Fig. 1e). It is important to model choice history kernels that cover the
timeframe of autocorrelations in the stimulus sequences, in order to
avoid long-term history biases and long-term autocorrelations to
confound the estimate of short-term choice history weights across the
different environments. While it is possible that mice exhibit even
more slowly fluctuating history biases, beyond seven trials back, such
slow biases would not differentially bias choice weights across the
different environments.

We fitted the probabilistic choice model separately to the
response data of each mouse in each environment, using a lasso
regression implemented in glmnet79. The regularization parameter λ
was determined using a 10-fold cross-validation procedure.

We further investigated how correct choice weights w+
n developed

across consecutive days when transitioning from the neutral into a
regular environment (neutral! repeating or neutral! alternating).
To this end, we subdivided the data into regular (repeating/alternating)
sessions, which were preceded by a neutral session (day 1), or preceded
by a neutral followed by one or two regular sessions of the same kind
(days 2 and 3). We fitted the probabilistic choicemodel to the choices of
days 1, 2, and 3 using the same procedure described above.

Finally, we tested whether correct choice weights w+
n in the neu-

tral environment depended on the temporal regularity that mice
experienced in the preceding session. Hence, we fitted the probabil-
istic choice model to neutral session data, separately for sessions
preceded by a repeating or alternating environment.

Parameter recovery analysis
In order to investigate whether the probabilistic choice model was
able to recover choice history kernels in the face of autocorrelated
stimulus sequences, we conducted a parameter recovery analysis.
First, we obtained a set of “ground truth” choice history kernels by
fitting the probabilistic choicemodel to the observed choices of each
mouse in each environment, as previously described. We then used
these postulated ground truth parameters to simulate synthetic
choice data in response to stimulus sequences of all three environ-
ments. The simulated choice data was not identical to the empirical
choice data due to the probabilistic nature of the model. However, it
was generated according to the same stimulus and choice history
weights that we reported previously. We simulated 100 synthetic
datasets for each mouse. We then asked whether we could recover
the ground truth choice history kernels when subjecting the simu-
lated choice data toour analysis pipeline.We found that ground truth
history kernels were accurately recovered, regardless of which sti-
mulus sequence was used to simulate choices (Supplementary
Fig. 1g–i). That is, an artificial observer with a neutral choice history
kernel was estimated to have a neutral choice history kernel
regardless of the stimulus sequence to which it responded (Supple-
mentary Fig. 1g). Furthermore, this neutral history kernel was dis-
tinctly different from the repeating and alternating history kernels
(Supplementary Fig. 1h and i). This indicates that our model fitting
procedure is able to accurately recover choice history kernels of the
shape that we report in the main results.

HiddenMarkovModel analysis of engaged and disengaged trials
We identified engaged and disengaged trials using a modeling fra-
mework based on hidden Markov Models31 (HMM). In particular, we
fit a HMM with two states, and their state-specific Bernoulli Gen-
eralized Linear Models (GLMs) to our neutral environment task data.
The GLMs consisted of a stimulus regressor and stimulus-
independent bias term. We hypothesized to obtain one state with
high stimulus weight, reflecting high engagement with the task, and
one state with low stimulus weight, reflecting disengagement from
the task. This was indeed borne out in the data (Supplementary
Fig. 3a and b). We repeated the probabilistic choice model analysis

described above separately for engaged and disengaged current and
1- to 7-back trials.

Reanalysis of data by the International Brain Laboratory
When analyzing correct choice history weights in the neutral envir-
onment, we observed that mice were more strongly biased to repeat
their response given in the 2-back trial compared to the more recent
1-back response. One might surmise that this increase in choice
repetition from 1- to 2-back trials could be driven by the exposure of
the mice to multiple transition probabilities in the current study. In
order to test whether this phenomenon was indeed particular to the
current experimental design, involving stimulus sequences with
biased transition probabilities, we analyzed a large, publicly available
dataset of mice performing a similar visual decision-making task,
which had not experienced biased transition probabilities20. We
selected sessions in which mice had mastered the task, but before
they were exposed to sessions involving blocked manipulations of
stimulus locations (full task of the IBL study).Mice had therefore only
experienced random stimulus sequences. Using the same exclusion
criteria described above, we analyzed data of 99mice in 583 sessions,
comprising 471,173 choices. To estimate choice history weights, we
fitted the same probabilistic choice model as described above to the
data of each mouse. The data analyzed in the current study is
available here:

https://figshare.com/articles/dataset/A_standardized_and_
reproducible_method_to_measure_decision-making_in_mice_Data/
11636748

Reinforcement learning models
In order to investigate the computational principles underlying history
bias adaptation, we adopted and extended a previously proposed
Reinforcement Learning (RL) model based on a partially observable
Markov decision process (POMDP21,33). We will first describe the pre-
viously proposed model, which we term single-trial POMPD RLmodel,
as thismodel’s belief state was solely based on the current trial’s visual
stimuli. We will then describe an extension to this model, which we
term multi-trial POMPD RL model. In addition to the current visual
stimuli, the belief state of the multi-trial POMPD RL model incorpo-
rates a memory of the previous rewarded choice.

Single-trial POMPD RLmodel. In our visual decision-making task, the
state of the current trial (left or right) is uncertain and therefore only
partially observable due to the presence of low contrast stimuli and
sensory noise. The model assumes that the agent forms an internal
estimate ŝ of the true signed stimulus contrast s, which is normally
distributed with constant variance around the true stimulus contrast:
p ŝjs� �

=Nðŝ; s,σ2Þ. Following Bayesian principles, the agent’s belief
about the current state is not limited to the point estimate ŝ, but
consists of a belief distribution over all possible values of s given ŝ. The
belief distribution is given by Bayes rule:

p sjŝ� �
=
p ŝjs� �

pðsÞ
pðŝÞ ð10Þ

We assume that the prior belief about s is uniform, yielding a
Gaussian belief distribution p sjŝ� �

with the same variance as the sen-
sory noise distribution and mean ŝ: p sjŝ� �

=Nðs;ŝ,σ2Þ. The agent’s
belief that the stimulus was presented on the right side of themonitor,
PR =p s>0jŝ� �

, is given by:

PR =
Z 1
0

pðsjŝÞds ð11Þ

The agent’s belief that the stimulus was presented on the left side
is given by PL = 1� PR.
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The agent combines this belief state PL,PR

� �
based on the current

stimuluswith stored values formaking left and right choices in left and
right perceptual states, given by qchoice,state in order to compute
expected values for left and right choices:

QL =
X

i2fL,Rg
Pi �qL,Pi

andQR =
X

i2fL,Rg
Pi � qR,Pi ð12Þ

Where QL and QR denote the expected value for left and right
choices, respectively.

The agent then uses these expected values together with a soft-
max decision to compute a probability of making a rightward choice,
p(“Rightward choice”):

p ‘‘Rightward choice’’ð Þ= eQR=T

eQL=T + eQR=T
ð13Þ

whereT denotes the softmax temperature, introducing decision noise.
The agent then decides for one of the two choice options using a
biased coin flip, based on p(“Rightward choice”).

Following the choice, the agent observes the associated outcome
r, which is 1 if the agents chose correctly and zero otherwise. It then
computes a prediction error δ by comparing the outcome to the
expected value of the chosen option QC:

δ = r � QC whereQC =
QL if choice= L

QR if choice =R

�
ð14Þ

Given this prediction error, the agent updates the values asso-
ciated with the chosen option qC,PL

and qC,PR
by weighing the predic-

tion error with a learning rate α and the belief of having occupied the
particular state:

qC,PL
 qC,PL

+α � PL � δ ð15Þ

qC,PR
 qC,PR

+α � PR � δ ð16Þ

We allowed the agent to have two distinct learning rates that are
used when predictions errors δ are positive (α + ) or negative (α�).

The single-trial POMPD RL model thus had four free parameters,
consisting of sensory noise σ2, decision noise T, as well as positive and
negative learning rates (α + and α�).

Multi-trial POMPD RLmodel. We extended the single-trial POMPD RL
model, by augmenting the state representation with a memory of the
rewarded choice of the previous trial. Therefore, in addition to PL and
PR which describe the agent’s belief about the current stimulus being
left or right, the agent’s state further comprised memoriesML andMR,
which were computed as follows:

ML =
λ if prev: choice = L and rewarded

0 otherwise

�
and

MR =
λ if prev: choice=R and rewarded

0 otherwise

� ð17Þ

The parameter λ reflects the memory strength of the agent, i.e.,
how strongly the agent relies on thememory of the previous rewarded
choice. λ was bounded by zero (no knowledge of the previous rewar-
ded choice) and 1 (perfect knowledge of the previous rewarded
choice). Therefore, besides learning values of pairings between per-
ceptual states and choices (qchoice,P �

), the multi-trial agent additionally
learned values of pairings between memory states and choices
(qchoice,M �

). The expected values of left and right choice options were

thus computed as:

QL =
X

i2fL,Rg
Pi � qL,Pi

+
X

j2fL,RgMj � qL,Mj
andQR

=
X

i2fL,Rg
Pi � qR,Pi

+
X

j2fL,RgMj � qR,Mj

ð18Þ

The expected value of the current choice was thus both influ-
enced by immediately accessible perceptual information of the cur-
rent trial, as well as memory information carried over from the
previous trial.

The multi-trial POMPD RL model had five free parameters, con-
sisting of sensory noise σ2, decision noise T, positive and negative
learning rates (α + and α�), andmemory strength λ. The same learning
rate was used to update perception-choice andmemory-choice values.

Multi-trial POMDPRLmodelwith extendedmemory. Thememoryof
the multi-trial POMDP RL model was limited to the previous rewarded
choice.We further extended this model, such that the agent’smemory
was based on multiple past trials. In particular, memory states ML and
MRwere computed as anexponentially weighted sumof past rewarded
left and right choices:

ML =M0

Xt�1
i =0

wi ILðciÞ andMR =M0

Xt�1
i =0

wi IRðciÞ ð19Þ

where IL and IR denote indicator functions, evaluated to 1 when the ith

choice was a rewarded left or right choice, respectively, and zero
otherwise. M0 was the initial memory strength for the 1-back trial, and
weights wi implemented an exponential decay function

wi = expð�ðt � i� 1Þ=τÞ ð20Þ

The exponential decay function was defined over elapsed trials,
where tdenotes the indexof the current trial and idenotes the indexof
a previous trial. Thus, τ denotes the number of elapsed trials beyond
the 1-back trial afterwhich the contribution of a past choice tomemory
has decreased to 1/e =0.37 of its initial value. Similar to the multi-trial
POMDP, the agent learned values of pairings between these expo-
nentially weightedmemories of past rewarded choices and the current
choice (qchoice,M � ).

The multi-trial POMDP RL model with extended memory had six
free parameters, consisting of sensory noise, decision noise, positive
and negative learning rates, initial memory strength M0, and expo-
nential decay time constant τ.

Fitting procedure and model comparison. We fit the single- and
multi-trial POMPDRLmodels to the joint data of theneutral, repeating,
and alternating environments pooled across mice. In particular, we
used the empirical coefficients of the probabilistic choice model (see
above)fit to the pooleddata in order to define a cost function basedon
summary statistics of the mice’s behavior80. The cost function was
defined as the sumof squareddifferencebetween empirical andmodel
coefficients, comprising the current stimulus weights of each envir-
onment, the 1- to 7-back correct choice weights of each environment,
as well as the 1- to 7-back correct choice weights of neutral sessions
following repeating and alternating sessions:

cost =
X

env2fN:,Rep:,Alt:g

X
c

wmouse
c,env �wmodel

c,env

� �2
+

X
env2fN:,Rep:,Alt:g

X7
n= 1

w+mouse
n,env �w+model

n,env

� �2

+
X7
n= 1

w+mouse
n,post�rep �w+model

n,post�rep
� �2

+
X7
n= 1

w+mouse
n,post�alt �w+model

n,post�alt
� �2

ð21Þ
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We minimized the cost function using Bayesian adaptive direct
search (BADS81). BADS alternates between a series of fast, local
Bayesian optimization steps and a systematic, slower exploration of
a mesh grid. When fitting the single-trial POMPD RL model, we
constrained the parameter space as follows. The sensory noise
parameter σ2 was constrained to the interval [0.05, 0.5], decision
noise to [0.01,1], and positive and negative learning rates to [0.01, 1].
When fitting the multi-trial POMPD RL model, we additionally con-
strained the memory strength parameter to lie between zero (no
memory) and 1 (perfect memory). The single-trial model was thus a
special case of the multi-trial model without memory (λ = 0). That is,
the single-trial model was nested in the multi-trial model. We repe-
ated the optimization process from 9 different starting points to
confirm converging solutions. Starting points were arranged on a
grid with low and high learning rates α + = α� = [0.2, 0.8], and weak
and strong memory λ = [0.05, 0.15]. Sensory noise σ2 and decision
noise T were initialized with 0.1 and 0.3, respectively. In addition to
the 8 starting points spanned by this grid, we added a 9th starting
point determined by manual optimization (σ2 = 0.14, α + = 0.95,
α� = 0.95, T = 0.34, λ = 0.05). The best fitting parameters for the
multi-trial model were: σ2 = 0.09, α + = 0.96, α� = 0.97, T = 0.36,
λ = 0.07, and multiple starting points converged to similar solutions.
The best fitting parameters for the single trial model were: σ2 = 0.1,
α + = 0.41, α� = 1, T = 0.4. We formally compared the best-fitting sin-
gle- and multi-trial models using an F-test for nested models, as well
as the Bayesian information criterion (BIC).

Visual decision-making task investigating spatially-specific
adaptation biases
We trained mice (n = 5) in an alternative version of the visual decision-
making task, in order to test whether the decreased tendency to repeat
the 1- relative to 2-back choice and the increased probability to repeat
decisions based on low sensory evidence could be due to spatially-
specific sensory adaptation to stimulus contrast. The experimental
design was similar to the standard task, with the important exception
that grating stimuli were smaller (2° s.d. Gaussian envelope) and the
vertical location of the stimuli was randomly varied between ±15°
altitude (3 mice) or ±10° altitude (2 mice) across trials. We reasoned
that the verticaldistanceof 20–30visual degreeswouldbe sufficient to
stimulate partly non-overlapping visual cortical neural populations,
given receptive field sizes of 5–12 visual degrees (half-width at half-
maximum) in primary visual cortex82. We trained mice to report the
horizontal location of the visual stimulus (left/right), independent of
its vertical location (high/low). This allowed us to manipulate whether
successive stimuli were presented at the same or different spatial
location (lower and upper visual field), even when those stimuli
required the same choice (left or right; Fig. 4e). We applied the same
session and trial exclusion criteria as for the main task. To analyze the
dependence of current choices on the previous trial, we selected trials
that were preceded by a correctly identified stimulus on the same side
as the current stimulus. We binned trials into those preceded by a low
or high contrast stimulus (6.25 and 100%), presented at the same or
different vertical location. For each of the four bins, we computed the
probability that the mouse repeats the previous choice, averaged
across current stimulus contrasts. Owing to the fact that current and
previous stimuli were presented at the same side, this repetition
probability was larger than 0.5, but could nevertheless be modulated
by previous contrast and vertical location. We tested the effects of
previous contrast (high/low) and vertical location (same/different)
with a 2 × 2 repeated-measures ANOVA. Furthermore, to provide sta-
tistical evidence against the hypothesis of spatially-specific sensory
adaptation, we conducted a Bayes Factor analysis, quantifying evi-
dence for the one-sided hypothesis that, due to a release from sensory
adaptation, mice would be more likely to repeat a previous choice
when a previous high contrast stimulus was presented at a different

rather than same spatial location (Fig. 4g). The Bayes Factor was cal-
culated with a default prior scale of 0.707.

Dopamine recording experiment
To measure dopamine release in the DLS, we employed fiber
photometry83,84.We used a single chronically implanted opticalfiber to
deliver excitation light and collect emitted fluorescence. We used
multiple excitation wavelengths (470 and 415 nm), delivered on alter-
nating frames (sampling rate of 40Hz), serving as target and isosbestic
control wavelengths, respectively. To remove movement and photo-
bleaching artifacts, we subtracted the isosbestic control from the tar-
get signal. In particular, for each session, we computed a least-squares
linear fit of the isosbestic to the target signal. We subtracted the fitted
isosbestic from the target signal and normalized by the fitted iso-
sbestic signal to compute ΔF/F:

ΔF
F

=
Signal470 � Fitted Control415

Fitted Control415
ð22Þ

The resulting signal was further high-pass filtered by subtracting a
moving average (25 s averaging window) and z-scored. For the main
analyses, we aligned the z-scored ΔF/F to stimulus or reward onset
times andbaselined the signal to thepre-stimulus periodof the current
trial (−0.5–0 s relative to stimulus onset). For assessing whether our
results could be explained by a slow carryover of the previous trial’s
dopamine response, we conducted an alternative analysis, in whichwe
baselined the current trial’s dopamine signal to the previous trial’s pre-
stimulus period and assessed the dopamine signal before the onset of
the current stimulus.

We trainedmice (n = 6) in the same visual decision-making task as
described above, with the exception that we increased the inter-trial
delay period (ITI), sampling from a uniformdistribution between 1 and
3 s to allow the dopamine signal to return to baseline before the next
trial. Due to the increased ITI, the median inter-stimulus interval was
5.55 s. To maximize the number of trials, we only presented neutral
(random) stimulus sequences.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The behavioral and photometrydata generated in this study have been
deposited in the Figshare database under accession code https://doi.
org/10.6084/m9.figshare.24179829. The behavioral data of the Inter-
national Brain Laboratory used in this study are available in the Fig-
share database under accession code https://doi.org/10.6084/m9.
figshare.11636748.v7. Source data are provided with this paper.

Code availability
The code generated in this study has been deposited in the Figshare
database under accession code https://doi.org/10.6084/m9.figshare.
24179829.
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