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In brief

The offline reactivation of hippocampal

neuronal activity during sleep is thought

to be crucial for memory. We investigated

the contribution of dentate spikes to

offline reactivation of hippocampal

activity patterns and flexible recognition

memory by combining triple-ensemble

(DG-CA3-CA1) recordings and closed-

loop optogenetic feedback in mice

undergoing sleep/rest following active

exploratory behavior. This work

establishes dentate spikes as a second

network event that, together with sharp-

wave ripples, supports offline

hippocampal dynamics for memory-

guided behavior.
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SUMMARY
Stabilizing new memories requires coordinated neuronal spiking activity during sleep. Hippocampal sharp-
wave ripples (SWRs) in the cornu ammonis (CA) region and dentate spikes (DSs) in the dentate gyrus (DG) are
prime candidate network events for supporting this offline process. SWRs have been studied extensively, but
the contribution of DSs remains unclear. By combining triple-ensemble (DG-CA3-CA1) recordings and
closed-loop optogenetics inmice, we show that, like SWRs, DSs synchronize spiking across DG andCA prin-
cipal cells to reactivate population-level patterns of neuronal coactivity expressed during prior waking expe-
rience. Notably, the population coactivity structure in DSs is more diverse and higher dimensional than that
seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during DSs impairs subse-
quent flexible memory performance during multi-object recognition tasks and associated hippocampal pat-
terns of neuronal coactivity. We conclude that DSs constitute a second offline network event central to hip-
pocampal population dynamics serving memory-guided behavior.
INTRODUCTION

Memories are stabilized during periods of sleep and rest.1–4

Decades of work have provided important insights into the

underlying brain network mechanisms and have identified off-

line hippocampal activity as essential for this process.5,6 Cen-

tral to our current understanding are hippocampal sharp-wave

ripples (SWRs) that feature an intermittent, high-frequency

(100–250 Hz) network event detected in the local field poten-

tials (LFPs) of the cornu ammonis (CA)1 region.7–10 During

SWRs, the firing activity of CA1 principal cells is transiently

modulated11,12 and reactivates the population-level firing pat-

terns expressed in previous waking experience.13 These off-

line spiking correlates have behavioral significance: suppress-

ing CA1 neurons during SWRs impairs memory recall for

recently acquired information.14–16 Conversely, prolonging

SWRs or reinforcing the coordination between SWRs and

neocortical activity promotes memory consolidation and sub-

sequent behavioral performance.17,18 Hippocampal SWRs

therefore constitute an offline network event important for

memory-guided behavior. However, during sleep/rest periods,

the hippocampus exhibits another prominent network event:

dentate spikes (DSs), which are seen in the LFPs of the den-

tate gyrus (DG). To date, DSs have received little attention

compared with SWRs. Accordingly, here we characterize the

neuronal spiking dynamics nested in DSs with respect to

SWRs and evaluate whether DSs constitute a second network
Neuron 112, 1–14, Novem
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event central to offline reactivation of waking firing patterns

and subsequent memory-guided behavior.

The DG gates sensory information to the hippocampus,

notably decorrelating these inputs into dissimilar neural pat-

terns.19–21 This function may be crucial for the hippocampus to

integrate multiple items in memory and to flexibly distinguish be-

tween stimuli with overlapping features. Within the DG, DSs

represent intermittent, large-amplitude network events recorded

in the LFPs of the DG granule cell layer and are associated with

increased spiking activity in dentate cells.22–24 However, across

the literature, both increased and suppressed spiking activity of

CA principal cells have been reported,22,24–28 although, notably,

some of these studies were in anesthetized25,27 or head-fixed

animals.24,28 Thus, here we further performed a systematic

comparative assessment of DG and CA principal cell spiking ac-

tivity during DSs versus SWRs in non-anesthetized, freely

behaving mice.

To investigate the influence of DSs on hippocampal population

activity and memory, we combined triple-site (DG-CA3-CA1)

extracellular multichannel recordings and closed-loop optoge-

netic interventions in mice during active exploratory behavior

and offline sleep/rest. We observed that during offline DSs, prin-

cipal cell spiking transiently increased across the DG and CA re-

gions of the hippocampus, nesting offline population-level activity

patterns that are distinct from those in SWRs. Further, we report

that the cell-to-cell coactivity seen during prior waking experience

is reactivated during DSs (as well as SWRs). DS-nested neuronal
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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activity is relevant to whole-hippocampus population dynamics

and memory-guided behavior: closed-loop suppression of

DG granule cell spiking selectively during offline DSs, but not

SWRs, impairs subsequent flexible memory performance in hip-

pocampal-dependent, multi-object recognition tasks. We pro-

pose that DSs constitute a second hippocampus network event

that plays a complementary role to that of SWRs by supporting

the offline reactivation of diverse population patterns of neuronal

coactivity in support of memory-guided behavior.

RESULTS

Firing activity of hippocampal neurons synchronizes
during DS events
We first used triple-site (DG-CA3-CA1) tetrode recordings to

monitor network events in the LFPs and the spike trains of

neuronal ensembles from the dorsal hippocampus of mice dur-

ing sleep/rest (Figures 1A, 1B, and S1A–S1C; n = 12 mice).

From these LFPs, we detected DSs in DG and SWRs in CA1 to

compare the spiking activity of principal cells between these

two types of network events. Across mice and recording ses-

sions, DS waveforms were highly consistent (Figures S1D and

S1E). Both DG DSs and CA1 SWRs were of short duration (Fig-

ure S1F; median [interquartile range, IQR] duration: DSs = 42.4

[40.0–46.4] ms; SWRs = 47.5 [45.2–51.0] ms) and occurred inter-

mittently (median [IQR] occurrence frequency: DSs = 0.40 [0.25–

0.58] Hz; SWRs = 0.75 [0.26–1.26] Hz) during behavioral and

LFP profiles indicative of sleep/rest (Figures S1G and S1H).

These two network events rarely occurred simultaneously,

consistent with previous reports,22,29 with the vast majority of

DSs not expressed within ±50 ms of a SWR (median [IQR]:

92.5% [87.9%–95.6%]; DS-SWR co-occurrence frequency:

0.03 [0.02–0.05] Hz; Figures S1I and S1J). We computed the

firing responses of individual principal cells (n = 2,196 total re-

corded principal cells; CA1, 887; CA3, 388; DG, 921 cells;

Figures S2A–S2F) with respect to the peak of either DSs or

SWRs, excluding those temporal windows where both events

co-occurred within ±50 ms. With the term ‘‘principal cells,’’ we

refer to CA pyramidal cells and DG granule cells that constitute

the dominant (hence ‘‘principal’’) cell type in the hippocampus,

exhibiting lower mean firing rates compared with local fast-

spiking inhibitory cells (Figure S2E). In line with previous

work, DG principal cells transiently increased their firing activity

during DSs,22,25 and the activity of CA principal cells increased

during SWRs (Figures 1C–1G and S2G–S2P).8,30 We further

observed that DG principal cell firing increased during SWRs

(Figures 1C, 1F, 1G, and S2G–S2P) and that CA principal cells

also increased their firing rate during DSs (Figures 1D–1G and

S2G–S2P), which contrasted with some earlier reports that CA

principal cell firing is suppressed during DSs.22,25

To quantify the magnitude of neuronal activation during DSs

and SWRs, we calculated the proportion of DG, CA3, and CA1

principal cells that increased their firing rate beyond a given sig-

nificance threshold, using the Z scored peri-event time histo-

grams obtained for each of these two network events (Figure 1G).

During DSs, the majority of DG (91%), CA3 (56%), and CA1

(61%) principal cells increased their firing rate more than three

standard deviations above baseline (Z score > 3, p < 0.003;
2 Neuron 112, 1–14, November 20, 2024
Figures S2G–S2I). During SWRs, a comparable proportion of

principal cells significantly increased their firing activity beyond

this threshold (Figures S2G–S2I). Hippocampal CA principal cells

exhibited preferential activation during SWRs, whereas DG prin-

cipal cells exhibited preferential activation during DSs (Fig-

ure S2I). DG principal cell population typically fired before CA

principal cell populations during DSs (Figures S2J–S2N). While

DG andCA principal cells exhibited such a temporal relationship,

both DSs and SWRswere associated with an overall transient in-

crease in hippocampal spiking activity (Figures S2O and S2P).

Previous studies identified two types of DS event (DS1

and DS2) based on the laminar profile of the transmembrane

currents associated with the LFP expression of these network

events.22,24,26 Therefore, we next asked whether principal cell

firing responses differed between DS1 and DS2. However, local-

izing sinks and sources of currents across hippocampal layers

requires applying current source density (CSD) analysis31 to

the LFPs measured at evenly spaced sites from the CA1 oriens

layer to the DG granule cell layer. Such a laminar profile is

not accessible with tetrode recordings. To distinguish between

DS1 and DS2 events, we therefore implanted linear silicon-

probes spanning the somato-dendritic axis of CA1 principal cells

and reaching the inferior blade of the DG in a separate group of

mice (n = 3). Having performed silicon-probe recordings during

sleep/rest, we applied CSD analysis to these LFPs measured

over the radial extent of the hippocampus to identify DS1 versus

DS2 according to their underlying profile of current sinks and

sources (Figures 2A and S3A). These CSD-validated DS1 and

DS2 events exhibited distinct DG granule cell layer LFP wave-

forms (Figures 2B and S3B).We then trained a linear discriminant

analysis classifier to identify these CSD-validated DS1 versus

DS2 events using only their DG granule cell layer LFP signal.

When tested on the silicon-probe LFP dataset, the classifier

achieved over 85% accuracy (Figure 2C). When next applied

to the tetrode LFP dataset, the classifier-identified DS1 and

DS2 events also exhibited distinct granule cell layer LFP wave-

forms (Figures 2D, S3C, and S3D), which were consistent with

those obtained in silicon-probe recordings (Figures 2B and

S3B). In both (tetrode and silicon-probe) datasets, DS2 repre-

sented two-thirds of the DS events (median [IQR]: 66% [61%–

73%]), thus constituting the dominant type. Leveraging this

cross-dataset approach, we found that the firing response of

DG and CA principal cells was stronger for DS2 than DS1

(Figures 2E–2G and S3E–S3J). A greater proportion of CA prin-

cipal cells showed firing activity below baseline during DS1

compared with DS2 (35% versus 11%; Figures 2F, S3K, and

S3L), providing insights into the previously documented DS-sup-

pressed firing in some CA principal cells.22,25,32 Nevertheless,

the average activity of principal cells in DS1 (and DS2) was signif-

icantly higher than their baseline firing (calculated outside of any

DS and SWR events) during sleep/rest (Figures 2G, S3G, and

S3H) and their overall mean firing rate calculated over the whole

recording day (Figures S3I and S3J). These results show that DS

events (both DS1 and DS2) constitute transient network states

that are qualitatively distinct from the sleep/rest epochs outside

these events in terms of their capacity to increase spiking activity

of individual principal cells distributed across hippocampal

regions.
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Figure 1. Dentate spikes recruit principal cell spiking across DG, CA3, and CA1
(A) Triple-ensemble (DG-CA3-CA1) tetrode recording allowed simultaneous monitoring of local field potentials (LFPs) and spiking activities.

(B) Upper: raw wide-band CA1 and DG LFP traces (black) showing sharp-wave ripples (SWRs, hash symbols) in CA1 and dentate spikes (DSs, asterisks) in DG.

Scale bars, 100ms (horizontal), 1.5 mV for DG, and 0.5mV for CA1 (vertical). Lower: (color-coded) raster plot of spike trains fromCA1 (orange), CA3 (red), and DG

(blue) principal cells (PCs, one cell per row). Shown is a few second sample of recording for clarity.

(C–E) Spiking responses from single example DG (C), CA3 (D), and CA1 (E) principal cells. Upper: Z scored peri-event time histogram (PETH) during DSs (left) and

SWRs (right). Lower: corresponding raster plot showing event-related spiking responses (one event per row).

(F) Group averaged firing rate PETHs for hippocampal PCs during DSs (top) and SWRs (bottom): DG (n = 921), CA3 (n = 388), and CA1 (n = 887) cells from 12mice.

Blue traces: mean ± SEM.

(G) Heatmaps showing Z scored firing rates for the DG, CA3, and CA1 PCs shown in (F). For each heatmap: one cell per row, sorted (top-to-bottom) from themost

activated (highest Z score at event peak, 0 ms, red) to the least activated (lowest Z score at event peak, blue) during DSs.
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Figure 2. Hippocampal principal cell firing is higher

in DS2 than DS1

(A) Left: laminar (64-channel) silicon-probe recording al-

lowed simultaneous monitoring of LFPs across hippo-

campal layers for current source density (CSD) analysis.

Right: example (radially organized) mean LFP traces (gray)

with superimposed CSD profile (heatmaps) for type 1 (DS1)

and type 2 (DS2) dentate spikes and SWRs (calculated from

2,231 DS events and 8,693 SWR events in one mouse).

Note the distinct CSD profiles reflecting the different

transmembrane currents associated with DS1 versus DS2

versus SWR events. Hippocampal layers: oriens (ori); pyr-

amidale (pyr); radiatum (rad); lacunosum-moleculare (lm);

outer (om), middle (mm), and inner (im) moleculare; gran-

ulare (gcl); and hippocampal fissure (hf).

(B) Upper: shown for silicon-probe recorded DS1 and DS2

identified from their CSD profiles are example average

granule cell layer LFP waveforms triggered by the peak of

these events. Lower: in these recordings there was a higher

proportion of DS2 than DS1 events (n = 15,067 events,

3 mice).

(C) Upper: we applied principal component analysis on the

normalized granule cell layer LFP waveforms for all silicon-

probe recorded DS events. We then used the principal

components explaining 90% of the variance to train a linear

discriminant classifier with the true labels (DS1 versus DS2)

determined by the individual CSD profiles. Lower: the

classifier performance (>85%) was significantly above

chance level (50%) when tested on silicon-probe recorded

LFP waveforms of unlabeled events. We used this classifier

to next distinguish DS1 and DS2 from tetrode-recorded

granule cell layer LFP waveforms (D).

(D) Upper: shown for tetrode-recorded DS events are the

average granule cell layer LFP waveforms for DS1 and DS2

predicted label obtained from the silicon-probe-based

classifier (C). Lower: these recordings also contained a

higher proportion of DS2 than DS1 events (n = 32,215

events, 12 mice).

(E) Group averaged firing rate PETHs for tetrode-recorded

DG, CA3, and CA1 principal cells during DS1 and DS2 (as

Figures 1F and 1G). Blue traces: mean ± SEM.

(F) Heatmaps showing Z scored firing rates for the DG, CA3,

and CA1 cells shown in (E). For each heatmap: one cell per

row, sorted (top-to-bottom) from the most activated

(highest Z score) to least activated (lowest Z score) during

DS1 peaks.

(G) Estimation plot showing the effect size for the differ-

ences in firing rate of DG, CA3, and CA1 principal cells

during all DS events, DS1 and DS2 events analyzed sepa-

rately, and SWRs compared with equivalent (50 ms dura-

tion matched) baseline windows (base) in which no DSs or

SWRs occurred. Upper: raw data points (each point rep-

resents one cell), with the gapped lines on the right as mean

(gap) ± SD (vertical ends) for each event. Lower: difference

(D) in firing rate between baseline windows and all DS, DS1,

DS2, and SWR events computed from 5,000 bootstrapped

resamples and with the difference-axis origin (dashed line)

aligned to the baseline rate (black dot, mean; black ticks,

95% confidence interval; filled curve, sampling-error dis-

tribution). The test statistic is the mean difference, shown

on the y axis of the lower plot. p values are from paired

permutation tests, event versus baseline, ***p < 0.001.

(E and G) show data from n = 2,196 hippocampal principal

cells (DG: n = 921, CA3: n = 388, and CA1: n = 887) from

12 mice.
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DS events nest higher-dimensional patterns of
population coactivity
We next investigated how the hippocampus organizes the col-

lective activity of its principal cells both within individual DS

events and across events, comparing these population-level

patterns to those expressed in SWRs. To proceed, we first

considered the neuron-wise vectors formed by the instanta-

neous spike discharge of principal cells in DSs, SWRs, or dura-

tion-matched control windows (without any DSs or SWRs) of the

same sleep/rest (Figures 3A and S4A; ‘‘population vector anal-

ysis’’). This was conducted for all sleep/rest epochs (both those

recorded before and those after active exploratory behavior).

Using the Gini index,33,34 we noted a marked decrease of the

mean population sparsity in the spiking vectors nested in DSs

and SWRs compared with baseline periods of duration-matched

control windows (Figure 3B), with equivalent population sparsity

levels during DS2 versus SWRs (Figures 3C, S4B, and S4C). A lo-

gistic regression classifier trained on a subset of these popula-

tion firing vectors and iteratively tested on the remaining subset

significantly distinguished between DS and SWR events but

could not distinguish between their corresponding pre-event

nor their post-event control epochs (Figure 3D). Successful clas-

sification was also obtained when using only DS2 events, which

matched SWRs in the mean population sparsity per event (Fig-

ure S4D). When evaluating the pairwise similarity of DS-nested

population vectors versus those of SWR-nested vectors (Fig-

ure 3E), we further observed that DSs contained a higher diver-

sity (i.e., lower similarity) of firing vectors compared with those
Figure 3. The coactivity structure of population spiking differs betwee

(A) Analytical framework: the population-level coactivity structure was analyzed u

SWRs, DSs, or duration matched (50 ms) baseline control windows. Scale bars sh

these population firing vectors were then binarized (for each cell: a non-zero spike

peer coactivity, controlling for the overall population activity.

(B and C) Estimation plots showing the effect size for the differences in population

or separately), SWRs, and compared with equivalent (50 ms duration matched) ba

points (each point represents one session with at least 100 of each event type a

(vertical ends) for each event. Lower: difference (D) in sparsity between baseline

strapped resamples and with the difference-axis origin (dashed line) aligned to the

curve, sampling-error distribution). (C) as (B) but comparing population sparsity du

indicating they engage similar levels of neuronal activity.

(D) A logistic regression classifier trained on population vectors nested in SWR ver

using a 4-fold cross-validation approach (75% of vectors for training; the remainin

discriminate between pre-DS versus pre-SWR and post-DS versus post-SWR ve

(E–G) DS population firing vectors are more diverse than those in SWRs. For each

each pair of population vectors nested in either DSs, SWRs, or duration-matched b

vector similarity for one session. Cross-population vector similarity was significan

compared with DS1 and DS2 separately (G).

(H–K) DS and SWRpopulation firing vectors exhibit distinct topology of neuronal coa

that quantified their short timescale (50 mswindows centered on DS or SWR peaks

remaining principal cells in the population (A). (H) This procedure returned for both D

the neuron pairwise coactivity structure of the population (example matrix from on

SWR-based neuronal coactivity graphs. For clarity, (J) shows anexample subset (lef

neuronal coactivity and average clustering coefficient (right). (K) Note that DS-base

graphs and control graphs constructed from duration-matched baseline windows

upper plot of (K) represents the mean clustering coefficient for one hippocampal p

(L) The dimensionality of population vector matrices (number of principal compon

For (B)–(D), (F), (G), and (L), each data point shows one recording session (n = 34 re

on the y axis of each lower plot (black dot, mean; black ticks, 95% confidence in

mutation tests, event versus baseline (B, F, and K); event versus event (C, F, K

**p < 0.01, ***p < 0.001.

6 Neuron 112, 1–14, November 20, 2024
in SWRs, which in turn were more similar to one another

(Figures 3F, 3G, and S4E–S4H).

This difference in population vector similarity suggested that

DSs andSWRs differ with respect to their neuronalmotifs of tran-

sient coactivation. By examining the topological organization of

peer-to-peer firing associations, we indeed observed that DS

events contain stronger motifs of coactive principal cells than

SWRs. For each cell pair ði; jÞ, we trained a generalized linear

model to predict the spike discharge of neuron j from that of

neuron i while accounting for the activity of the remaining peers

(Figure 3A; ‘‘peer-to-peer coactivity analysis’’). We performed

this procedure separately for DS and SWR events, which re-

turned for each type of network event a matrix of b regression

weights that represented the coactivity structure of the popula-

tion (Figure 3H). With these matrices, for both DS and SWR

events, we constructed neuronal coactivity graphs (with no

self-connections), where each node is a cell and the edge linking

any two nodes represents the firing association of that cell

pair (Figures 3I and 3J). This revealed that DS-based graphs con-

tained stronger triads of coactive nodes compared with

SWR graphs (Figures 3K, S4I, and S4J). This remained the

case when directly comparing DS2 and SWR events (Figure S4K)

and when calculating the neuron-wise average coactivity

strength (Figure S4L).

These findings showed that while both DS and SWR events

synchronize hippocampal principal cells, population coactivity

responses to DSs are more diverse. To further assess this, we

applied principal component analysis to quantify and compare
n DSs and SWRs

sing population vectors of principal cell spiking transiently nested in individual

ow 20 ms and 0.5 mV for SWRs and 1 mV for DSs. For the analyses in (B)–(G),

count gives 1; or else 0). For the analyses in (H)–(K), we calculated the peer-to-

sparsity (using the Gini index) during DSs (with DS1 and DS2 plotted altogether

seline windows (baseline) in which no DSs or SWRs occurred. Upper: raw data

nd 20 principal cells), with the gapped lines on the right as mean (gap) ± SD

windows and all DS, DS1, DS2, and SWR events computed from 5,000 boot-

baseline sparsity (black dot, mean; black ticks, 95% confidence interval; filled

ring SWR versus DS2. Note that DS2 and SWR events have equivalent sparsity,

sus DS events or matched duration pre-event and post-event control windows,

g 25% for evaluation), significantly discriminated DSs from SWRs but could not

ctors. Gray horizontal bars: mean classification accuracy.

sleep session, we computed the similarity (Pearson correlation coefficient) for

aseline windows (baseline). (E) shows example DS and SWRmatrices of cross-

tly higher in SWRs compared with both DSs and control windows (F), and when

ctivity. The coactivity between any two ði; jÞ neuronswasmeasured using aGLM

) firing relationship while accounting for network-level modulation reported by the

S and SWR events an adjacency matrix of b regression weights that represented

e session). (I) Visualization of the corresponding matrices representing DS- and

t) for each adjacencymatrices shown in (H), alongwith its correspondingmotifs of

d graphs contained stronger triads of coactive nodes compared with both SWR

(baseline), as indicated by higher mean clustering coefficients. Each point in the

rincipal cell (n = 1,265 neurons, 8 mice).

ents required to explain 90% of the variance) was higher for DSs than SWRs.

cording sessions from 8mice). The test statistic is the mean difference, shown

terval; filled curve, sampling-error distribution). p values are from paired per-

, and L); or event versus pre-event, event versus post-event (D). *p < 0.05,
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Figure 4. Waking patterns of hippocampal coactivity reactivate in offline DSs

(A) DS and SWR reactivation of waking patterns formed by principal cell theta coactivity. For each cell pair ði;jÞ, we predicted the spike discharge of neuron j from

the activity of neuron i while regressing out the activity of the remaining population during pre-exploration sleep, exploration of open-field arenas, and post-

exploration sleep (using GLMs as in Figure 3A). We separately applied this procedure for DSs and SWRs in both sleep/rest sessions (offline DS versus offline SWR

coactivity) and across theta cycles in the exploration session (waking theta coactivity). This procedure returned amatrix of b regression weights that represented

the neurons pairwise coactivity structure of the population in each session. We then used a linear mixedmodel (LMM) to compare the waking theta coactivity with

post-exploration sleep coactivity (in DSs or SWRs) while controlling for pre-exploration sleep coactivity (in DSs or SWRs), and vice versa (reverse model). We

included mouse identity as a random factor in each LMM.

(B) SWR reactivation (measured by the b coefficients of the LMM that predicted post-exploration SWR coactivity fromwaking theta coactivity, controlling for pre-

exploration SWR coactivity). Left: the b coefficient for theta coactivity was significantly higher when predicting post-exploration SWR coactivity than with the

reverse model (i.e., predicting pre-exploration SWR coactivity from theta coactivity, controlling for post-exploration SWR coactivity). Gray points show the b

coefficient for theta coactivity for individual mice. Error bars show ± 95% confidence interval. p value from t-test comparing post versus pre b coefficients:

t(7,308) = 10.29; p < 0.0001. Right: the histogram shows the random probability distribution of b weights for theta coactivity when cell pair identity was shuffled

(i.e., a null distribution based on 1,000 random shuffles; n = 7,310 cell pairs from 4 mice). The colored arrow shows the actual b coefficient for theta coactivity.

(C) DS reactivation exhibited the same pattern of results as SWR reactivation, shown in B. p value from t-test comparing post versus pre b coefficients t(7,308) =

8.84; p < 0.0001.
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the variance explained by the activity patterns nested in DS1,

DS2, and SWR. This revealed higher dimensionality of population

vectors in DS events compared with SWRs (Figure 3L; Table S1).

This was accounted for by DS2 firing vectors, with those nested

in DS1 requiring fewer principal components to explain equiva-

lent variance and exhibiting lower dimensionality than those in

DS2 and SWRs (Figures S4M–S4P).

Waking theta coactivity patterns reactivate in offline
DSs and support flexible memory
The DS-nested motifs of peer-to-peer firing associations

could instantiate population patterns of neuronal coactivity

undergoing offline reactivation to support memory-guided

behavior. Notably, the link between hippocampal SWRs and

memory reactivation was initially established through the obser-

vation that the neural patterns of joint spiking activity expressed

during exploratory behavior are more strongly correlated with

those nested in post-exploration sleep/rest SWRs than those

in SWRs before waking experience.8,13 Accordingly, we next
determined whether DSs constitute another hippocampal time

frame for offline reactivation of waking coactivity patterns. To

proceed, we used our peer-to-peer coactivity analysis (Fig-

ure 3A), applying it to DS versus SWR events of sleep/rest

before and after exploration of open-field arenas (Figures 4A

and S5). Likewise, we obtained the waking patterns of popula-

tion coactivity in theta cycles during exploration. With these,

we computed DS and SWR reactivation by measuring the ten-

dency of the peer-to-peer theta firing associations to reoccur

in post-exploration sleep/rest DS (or SWR) events while control-

ling for prior pre-exploration DS (or SWR) coactivity and mouse

identity using a linear mixed model. In line with previous work,

offline patterns of SWR coactivity reflected those of theta coac-

tivity significantly more during post-exploration than pre-explo-

ration sleep/rest (Figures 4B, left, S5B, and S5D). This SWR re-

activation was significantly higher than that obtained with a null

distribution generated from models using randomly shuffled

cell pair identities (Figure 4B, right). Importantly, we observed

that theta coactivity patterns were also strongly reactivated in
Neuron 112, 1–14, November 20, 2024 7
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Figure 5. DS- and SWR-informed offline suppressions of DG granule cell activity

(A) Triple-ensemble (DG-CA3-CA1) recording with LFP-informed yellow (561 nm) DG light delivery. Dentate granule cells (DGCs) transduced with ArchT-GFP

(DGGrm2::ArchT). Closed-loop light delivery to suppress DGC spiking immediately upon either DS detection (DS-sync condition) or SWR detection (SWR-

sync) or their respective control conditions (DS-delay and SWR-delay, where light delivery was offset by 100 ms after event detection).

(B) ArchT-GFP-expressing DGCs in a DGGrm2::ArchT mouse. Neuronal nuclei stained with NeuN. Scale bar, 100 mm. Granule cell layer, gcl; molecular layer, mol;

pyramidal cell layer, pyr; stratum oriens, ori; radiatum, rad; and lucidum, s.l.

(C and D) Closed-loop feedback transiently silenced DGCs during either DG DS (C; ‘‘DS-sync’’) or CA1 SWR (D; ‘‘SWR-sync’’) events, illustrated with raw data

examples. Scale bars, 30 ms (horizontal) and 1.5 mV (vertical).

(E) Raster plots (event-related spiking response; one light pulse per row (upper), and peri-event time histograms (lower) showing photo-silencing of two example

DG cells from a DGGrm2::ArchT mouse in DS-delay and DS-sync.

(F and G) Corresponding quantification of average DGC firing rate (Z score) for DS-delay versus DS-sync (F and G; n = 548 cells in 9 mice). In (F), the orange box

shows the laser-on period for DS-sync.

(H–J) As (E)–(G) but showing DGC photo-silencing during SWR-delay and SWR-dync conditions (I and J; n = 181 cells in 3 mice). In (I), the orange box shows the

laser-on period for SWR-sync.

For (F) and (I), the traces showmean ± SEM. For (G) and (J), the test statistic is the mean difference, shown on the y axis of each lower plot (black dot, mean; black

ticks, 95% confidence interval; filled curve, sampling-error distribution). p values are from unpaired permutation tests, delay versus sync, ***p < 0.001.
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post-exploration DSs (Figures 4C, S5C, and S5E; Table S2). The

clustering coefficient was higher in DSs than SWRs and also

increased from pre- to post-exploration sleep in both SWRs

and DSs (Figures S5F and S5G). Analyses of DS1 and DS2 sepa-

rately showed evidence for reactivation during both types of

post-exploration DS events (Figures S5H and S5I). By applying

the same analytical framework to the neuronal ensembles

tracked in SWRs and DSs, this result provided evidence for off-

line DS reactivation of hippocampal waking firing patterns.

The offline reactivation of waking population patterns in sleep/

rest DSs (Figure 4C), which contain more diverse and higher-

dimensional patterns of neuronal coactivation than those found
8 Neuron 112, 1–14, November 20, 2024
in SWRs (Figures 3F and 3L), raised the question of their network

contribution to memory-guided behavior. We thus tested

whether the offline population response during DSs was neces-

sary to perform tasks that require integrating multiple items in

memory to flexibly distinguish between familiar and novel stimuli.

To this end, we transduced DG granule cells with the yellow

(561 nm) light-driven optogenetic silencer Archaerhodopsin T

(ArchT) in Grm2-Cre mice (Figures 5A and 5B). We then im-

planted these DGGrm2::ArchT mice for triple-ensemble (DG-

CA3-CA1) recordings combined with bilateral optic fibers for

DG light delivery. In these experiments, DG light delivery was

performed in a closed-loop manner during sleep/rest using the
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real-time detection of either DSs (in the DG LFPs) or SWRs (in the

CA1 LFPs; Figures 5A, 5C, and 5D; ‘‘DS-sync’’ or ‘‘SWR-sync’’

conditions). We also used a within-subject control paradigm

whereby, on different days, light was not synchronized to but

instead delivered after each DS or SWR had elapsed (‘‘DS-

delay’’ or ‘‘SWR-delay’’ conditions). DS-synchronized light deliv-

ery did not affect the amplitude of the DG or CA1 LFPs, nor CA1

ripple duration, occurrence probability, or power (Figures S6A–

S6I). DS-synchronized light delivery significantly reduced spiking

activity in DG neurons compared with when laser-onset was DS

delayed (Figures 5E–5G) and also reduced spiking activity in CA

principal cells (Figures S6J and S6K). Paired analysis of the firing

rates of dentate granule cells during DS events without light de-

livery versus those with light deliver (DS-sync) also showed

significantly reduced instantaneous spiking (15.0 ± 0.7 versus

10.4 ± 0.6 Hz). SWR-synchronized light delivery also significantly

suppressed DG neuronal spiking (Figures 5H–5J).

We applied these closed-loop light-delivery approaches dur-

ing interposed sleep/rest sessions in three behavioral tasks (Fig-

ures 6 and S6L–S6T). The first, hippocampal-dependent task

required mice to recognize previously encountered (familiar)

versus novel objects.35 In this novel-object recognition task,

mice repeatedly explored a square-walled arena containing

four objects (Figures 6A and 6B). In the first session (‘‘sampling’’),

mice encountered four distinct novel objects, each one placed

beside a wall. On the subsequent sessions (‘‘test’’), one of the

initially sampled objects was replaced by a different novel object

so that the mouse could explore one completely novel object

along with the three ‘‘familiar’’ objects from the previous session

that day. These exploration (sampling and test) sessions alter-

nated with sleep/rest sessions where mice received DG-tar-

geted light delivery, either synchronized or delayed with respect

to either DS or SWR onset, thus yielding four distinct experi-

mental conditions (DS-delay, DS-sync, SWR-delay, and SWR-

sync). In each test session n, we measured novelty preference

using the proportion of time mice spent investigating the novel

versus the familiar objects, thereby probing recognition memory

for session n � 1. We found that novelty detection was not

impaired in test sessions following sleep with DG granule cell

suppression in either DS-delayed, SWR-delayed, or SWR-syn-

chronized conditions: mice subsequently expressed a stronger

preference for novel over familiar objects under these three con-

ditions (Figures 6C and 6D). This novel-object preference

was similar to that observed in control mice without any optoge-

netic intervention (Figure S6L). However, novel-object prefer-

ence was absent in test sessions following DS-synchronized

suppression (Figures 6C and 6D). The total object exploration

time, number of laser pulses, and number of SWRs did not differ

between the DS-synchronized and DS-delayed conditions

(Figures S6M–S6O).

We also tested the offline DS-informed suppression of DG

granule cells after tone fear conditioning as a non-hippocampal-

dependent task.36 Mice were trained with five tone-shock pair-

ings, and following DS-synchronized or DS-delayed suppression,

we evaluated fearmemory bymeasuring freezing behavior during

a recall session in which tones were played but no shocks were

given. Comparedwith baseline freezing (measured during the first

tone of training, before any shocks were given), mice exhibited
higher (and equivalent) freezing levels during recall regardless of

whether they had received DS-synchronized or DS-delayed sup-

pression (Figures S6P–S6S).

We finally tested whether DS-synchronized suppression

affected performance in a novel-position recognition task that

is reportedly more sensitive to DG than CA1 lesions, whereas

novel-object recognition requires both DG and CA1.37 This

novel-position task is similar to the novel-object recognition

task in that mice explore four novel objects during the sampling

phase (Figure 6E). However, rather than introducing a new object

in the test phase, the locations of two of the initially sampled ob-

jects are swapped for the subsequent session, leaving the other

two objects in their original locations (Figure 6E). We found that

mice preferentially explored the novel-positioned objects

following DS-delayed suppression of DG granule cells but

showed no such preference following DS-synchronized sup-

pression (Figures 6F, 6G, and S6T).

Recent work has identified that the continued integration of

new items in memory is associated with increased neuronal co-

activity patterns nested in hippocampal theta oscillations.38 In

line with this, we found that the preserved object recognition

memory observed after offline DG cell suppression in the DS-de-

layed, SWR-delayed, and SWR-synchronized conditions was

accompanied by stronger theta coactivity (Figure 6H). This was

not the case following DS-synchronized suppression (Figure 6H),

indicating that DS silencing disrupts the integration of recently

experienced information. Collectively, these results show that

the hippocampal population response to offline DS events is

required for flexible, memory-based recognition of previously

encountered items and associated network gain in theta

coactivity.

DISCUSSION

Our findings establish that offline DSs activate neurons across

the DG and CA regions. DSs are therefore a second hippocam-

pal network event that hosts short timescale coactivation form-

ing population-level neural patterns, like the well-established

SWRs. However, the activity structure and neuronal content

are distinct in DSs. Notably, we found that DSs nest stronger mo-

tifs of coactive neurons, yielding population patterns of higher di-

versity and dimensionality compared with those in SWRs. Like

SWRs, DSs reactivate hippocampal population patterns ex-

pressed in prior waking experience. This offline reactivation is

behaviorally significant: closed-loop suppression of DG granule

cell spiking selectively during offline DS events is sufficient to

disrupt downstream CA principal cell activity and impair flexible

recognition memory for previously encountered items, as well as

the associated network gain in theta-nested neuronal coactivity.

Collectively, these findings identify a core contribution for DSs to

hippocampal patterns of population activity andmemory-guided

behavior.

We started this investigation by observing that DSs increase

spiking activity in principal cells across the DG, CA3, andCA1 re-

gions of the hippocampus. This finding is consistent with previ-

ous reports of DS-evoked spiking activity in DG granule cells

but contrasts with some earlier reports of DS-suppressed CA

pyramidal cell spiking.22,24–26 Notably, Bragin and colleagues
Neuron 112, 1–14, November 20, 2024 9
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Figure 6. Offline suppression of DS activity impairs flexible recognition memory

(A) Behavioral arena used for the recognition memory tasks.

(B–D) Offline DS events are required for novel-object recognition memory. (B) Task layout. During sleep sessions (interposed between novel-object exploration

sessions), closed-loop optogenetic suppression of DG cells in DGGrm2::ArchT mice was achieved using real-time monitoring of either DG or CA1 LFPs to actuate

either DS synchronized (DS-sync) or delayed (DS-delay), SWR synchronized (SWR-sync), or delayed (SWR-delay) DG light delivery. Letters depict object lo-

cations in the task arena (A), with novel objects in blue. (C) Estimation plot showing the percentage of time spent bymice with the novel versus the familiar objects

in each of the four LFP-informed closed-loop conditions. Upper: each data point represents the percentage time spent with the novel object versus the mean

percentage time spent with the three familiar objects; chance performance is shown by the dashed line. Lower: mean difference between novel and familiar object

exploration time. (D) as (C), but directly comparing novel-object preference in the delay versus sync conditions for DS and SWR events. Mice in the DS-delay,

SWR-delay, and SWR-sync conditions, but not the DS-sync condition, exhibited a significant preference for novel over familiar objects (DS-delay and DS-sync:

n = 10 sessions, in 3 mice; SWR-delay and SWR-sync: n = 12 sessions in 3 mice).

(E–G) Likewise, offline DS events are required for novel-position recognition memory. (E) Task layout. Letters depict object locations, with novel positions in blue.

(F) Estimation plot showing the percentage of time spent by DGGrm2::ArchT mice with the novel versus the familiar object locations following sleep sessions with

DS-sync or DS-delay suppression of DG cells. Upper: each data point represents the percentage time spent with objects in novel locations versus objects in

familiar locations; chance performance is shown by the dashed line. Lower: mean difference between novel and familiar location exploration times. (G) As (F) but

directly comparing novel location preference in DS-delay versus DS-sync. Mice in the DS-delay but not the DS-sync condition exhibited a significant preference

for objects in novel over familiar locations (n = 12 novel versus n = 12 familiar locations, 6 sessions, in 4 mice).

(H) In the object recognition task, the theta peer-to-peer coactivity increased from the initial object sampling to the memory test following offline DG cell sup-

pression in the DS-delay, SWR-delay, and SWR-sync conditions, but this was not the case in the DS-sync condition (where mice exhibited no novel-object

preference). Paired estimation plot showing theta coactivity during sampling versus test. Upper: each point represents a beta coefficient for the theta-nested

peer-to-peer coactivity between pairs of hippocampal principal cells (n = 1,537, n = 678, n = 1,719, and n = 1,482 cell pairs, respectively, in 6 mice). Lower: black

dot, mean difference between sampling and test sessions; black ticks, 95% confidence interval.

For (C) and (D) and (F)–(H), the test statistic is the mean difference, shown on the y axis of each lower plot (black dot, mean; black ticks, 95% confidence interval;

filled curve, sampling-error distribution). p values are from paired permutation tests, familiar versus novel (C and F); delay versus sync (D and G); or test versus

sampling (H), *p < 0.05, **p < 0.01, ***p < 0.001.
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reported suppressed spiking in 3/14 CA3 principal cells and sup-

pressed CA1 multi-unit activity in 2/10 rats, showing some,

rather than consistent, CA suppression. In addition, Penttonen

et al. reported suppressed CA1 multi-unit activity and hyperpo-

larization of 4 intracellularly recorded CA1 neurons during DSs

in anesthetized rats. However, DS rates are �10-fold lower

and have smaller amplitude during anesthesia compared with

DSs observed during natural sleep/rest.25 Other studies re-

ported increased CA1 multi-unit activity26 and increased CA3

single-unit spiking during DS events24 in non-anesthetized

mice. Here, we report a variety of firing responses across individ-

ual CA neurons, ranging from strong activation to suppression

during DS events (Figures 1G and 2F). However, our systematic

study (including > 3,500 principal cells; Table S3) shows that DSs

do indeed drive increased mean population spiking activity in

both DG and CA principal cells (Figure 2G).

Previous studies distinguished between two types of DS

events (DS1 and DS2) based on the laminar profile of their trans-

membrane currents.22,24,26 Here, we found that DS2 are more

effective than DS1 events at recruiting hippocampal principal

cells, with higher spike rates per cell and more coactive cells

per event. This result is consistent with a recent report that

DS2 but not DS1 events reliably increase spiking in DG and

CA3 principal cells.24 The same report saw only a slight increase

in CA1 spiking during DS2 and no effect of DS1 events on either

CA1 or CA3 principal cells. They also found that DG principal cell

spiking was suppressed during DS1, in contrast to our study and

previous reports.22 Here we found that both DS1 and DS2 events

evoked significantly increased spiking activity in DG, CA3, and

CA1 principal cells, but again would emphasize the diversity of

CA cell responses, especially during DS1 events (Figure 2F).

The observed differences between studies might reflect differ-

ences between DS events in head-fixed awake mice versus

those in sleep/rest.22,29 They could also indicate a moment-to-

moment diversity across individual DSs, similar to that high-

lighted for individual SWRs39 and theta cycles.40

In this study, we directly compared patterns of population

spiking activity in DSs versus SWRs. We found that population

firing differed across these two types of network events, allowing

a classifier to distinguish DSs versus SWRs based on their

instantaneous vectors of principal cell spiking (Figure 3D). We

also observed that population patterns in DSs are overall more

diverse (less correlated) than those in SWRs, showing stronger

triads of coactive neurons and higher dimensionality (Figures 3

and S4). DS1 and DS2 population patterns yet showed distinct

trends with respect to SWRs: DS1 firing vectors exhibited less di-

versity (i.e., required fewer principal components to explain most

of the variance; Figure S4O) and lower dimensionality (Fig-

ure S4P) than those in SWRs; DS2 firing vectors showed the

opposite trend. Previous work has reported that DS1 and DS2

events relate to distinct entorhinal cortex inputs, with DS1 relying

more on the lateral entorhinal cortex while DS2 events rely more

on the medial entorhinal cortex.24 This suggests a possible divi-

sion of mnemonic labor where DS1 population patterns would

favor non-spatial information streams while DS2 might favor

spatial information.41 We also found that waking patterns of

neuronal coactivity nested in theta oscillations reactivate in

DSs of post-exploration sleep/rest (Figures 4 and S5). Notably,
the distributions of coactivity values in DSs indicate both positive

and negative firing associations (Figure S5E). The coexistence of

correlated and anti-correlated spiking activities in DSs could

reflect a Hebbian learning rule as reported in SWRs,42 whereby

positive and negative changes in hippocampal principal cell

firing associations can shape offline DS reactivation as a function

of recent waking experience. These findings provide important

evidence for offline reactivation of hippocampal waking firing

patterns outside of SWRs, stimulating new avenues for future

work to explore.

To determine whether spiking activity observed during DS

events was required for subsequent memory-guided behavior,

we deployed a closed-loop optogenetic feedback approach to

suppress DG granule cell activity selectively during DS events

(Figures 5 and S6). Real-time inhibition of the DG in Grm2-Cre

mice did not yield a complete suppression of the spiking activity

in dentate granule cells. This also did not alter the magnitude of

DSs, which powerful expression in the DG LFPs could reflect the

high cellular density of the granule cell layer and its strong neural

inputs. This DS-synchronized suppression of DG principal cells

reduced concomitant spiking activity in CA principal cells but

did not affect the expression of SWRs in CA1. When applied in

sleep/rest following object-location exploration, this DS-syn-

chronized neural suppression impaired subsequent memory

performance in both novel-object and novel-position recognition

tasks. Although ours is the first study to leverage a closed-loop

optogenetic approach, these findings are consistent with previ-

ous behavioral studies using electrical stimulation to disrupt hip-

pocampal activity during DSs.32,43,44 While both approaches

provide strong evidence for a central contribution of DS events

in memory-guided behavior, it is important to recognize that op-

togenetic and electrical interventions do not recapitulate natural

hippocampal activity patterns. Moreover, DS2 represents the

dominant type of DS event that exhibits, in comparison with

DS1, stronger firing rate increase of DG, CA3, and CA1 principal

cells (Figure 2G), neuronal recruitment (Figures S3E and S3F),

coactivity (Figure S4L), and lower dimensionality (Figures S4O

and S4P). The major effect of DS activity on memory may be

associated with DS2, a hypothesis that future technological

(closed-loop controller) development for differential manipula-

tion of DS1 versus DS2 would be able to test. We also found

that increased theta coactivity was associated with recognition

memory and that this network gain in theta coactivity was absent

following DS-synchronized neural suppression (Figure 6H). This

finding is consistent with recent work showing that continual

integration of new memory items across behavioral experiences

increases neuronal coactivity.38 Altogether, these results sup-

port the idea that neuronal activity during DS events plays

an important role in subsequent memory-guided behavior, as

SWRs do.

Why does the hippocampus usemore than one offline network

mechanism to support memory? DSs and SWRs are driven by

distinct neural circuits. SWRs depend on excitatory inputs from

CA3 to theCA1 stratum radiatum, generating high-frequency rip-

ples in the CA1 pyramidal layer.7,45–47 DSs are non-oscillatory

events associated with excitatory inputs from the entorhinal cor-

tex to the DG molecular layers.22,24,29 Notably, entorhinal cortex

lesions eliminate DSs but increase SWR incidence.22 Our
Neuron 112, 1–14, November 20, 2024 11
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structural analysis of DS versus SWR population patterns raises

the intriguing possibility that SWRs may be more suited for

lower-dimensional network coactivity serving robust information

flow, whereas DSs may promote higher-dimensional activity, al-

lowing diverse mnemonic patterns to coexist offline and support

flexible, pattern separation for subsequent behavior. Collec-

tively, these findings open important new avenues for future

work to explore the interplay between DS versus SWR events

as two distinct timeframes for the hippocampus to optimize off-

line computations serving memory-guided behavior.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV9-CAG-Flex-ArchT-GFP UNC Vector Core N/A

Experimental models: Organisms/strains

C57BL/6J mice Charles River 632

Grm2-Cre Tg(Grm2-cre)MR90Gsat/Mmucd MMRRC MMRRC_034611-UCD

Nestin-Cre B6.Cg-Tg(Nes-Cre)1Kln/J Jackson Laboratories IMSR_JAX:003771

Software and algorithms

Intan RHD2000 Intan Technologies RHD2164

Positrack Kevin Allen N/A

Empirical Mode Decomposition in Python Quinn et al.48 N/A

Kilosort via SpikeForest Magland et al.49; Pachitariu et al.50 N/A

Other

12um tungsten wires California Fine Wire M294520

Optic fibers Doric lenses MFC_200/230-0.37_25mm_RM3_FLT

Head-stage amplifier Intan Technologies RHD2164

561nm diode-pumped solid-state laser Laser 2000 CL561-100
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
These experiments used adult (4–6 months old) wild-type C57Bl6/J mice (Charles River Laboratories, Kent, UK) or hemizygous

Nestin-Cre mice (Jackson Laboratories; B6.Cg-Tg(Nes-Cre)1Kln/J, stock no. 003771, RRID: IMSR_JAX:003771) for the initial inves-

tigation of principal cell spiking in DSs and SWRs using tetrodes or silicon-probe recordings (Figures 1–4). To optogenetically target

DG granule cells, we used adult metabotropic-glutamate-receptor 2-Cre (Grm2-Cre) hemizygous male mice (Figures 5 and 6). This

Grm2-Cre mouse strain was obtained from the Mutant Mouse Resource and Research Center (MMRRC; Tg(Grm2-cre)MR90Gsat/

Mmucd; stock no. 034611-UCD, RRID:MMRRC_034611-UCD) at University of California at Davis, an NIH-funded strain repository,

andwas donated to theMMRRCbyNathaniel Heintz, Ph.D., The Rockefeller University, GENSAT andCharles Gerfen, Ph.D., National

Institutes of Health – National Institute of Mental Health. All mice were group housed with same-sex littermates until the start of the

experiment and singly housed after surgery. Mice had free access to food and water throughout, in a dedicated housing room with a

12/12 h light/dark cycle (7 a.m.–7 p.m.), 19�C–23�C ambient temperature and 40–70 % humidity. This study used mice with good

health/immune status, that were not involved in previous procedures, and were drug and test naı̈ve at the start of the experiments.

Mice were adult males and the influence (or association) of age and sex, or both on the results of the study was not tested. This rep-

resents a limitation to this research’s generalizability. All experiments were performed between 8 a.m.–6 p.m. during the light-on

period, that is when mice sleep more. Experiments were performed in accordance with the Animals (Scientific Procedures) Act,

1986 (United Kingdom), with final ethical review by the Animals in Science Regulation Unit of the UK Home Office.

METHOD DETAILS

Viral vectors
AnAAV carrying a double-floxed inverse open reading frame (DIO) Cre-dependent opsin under the CAGpromoter was used to deliver

Archaerhodopsin (ArchT) (Han et al.51) into DG granule cells (AAV9-CAG-Flex-ArchT-GFP, titer: 8.3 3 1012 TU / mL, University of

North Carolina).

Surgical procedures
Mice received viral injections andmicrodrive implantations under gaseous isoflurane anaesthesia (�1% in 1 L /minO2), with systemic

and local analgesia administered subcutaneously (meloxicam 5 mg / kg; buprenorphine 0.1 mg / kg; bupivacaine 2 mg / kg).

Viruses were injected bilaterally into the dorsal DG (3 3 200 nL per hemisphere; at the following stereotaxic coordinates from
Neuron 112, 1–14.e1–e8, November 20, 2024 e1
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bregma: anterior-posterior: -1.6, -2.4, -2.4; mediolateral: ±1.0, ±1.2, ±1.5; dorsoventral: -1.7, -1.7, -1.7 mm, respectively), and deliv-

ered using a pulled glass micropipette (�16 mm i.d.) at a rate of 100 nL min�1, with an additional 100 nL min�1 diffusion time with the

pipette in situ. In a separate surgery, mice were implanted with a microdrive containing twelve- or fourteen-independently movable

tetrodes bilaterally targeting DG, CA3, and CA1, and two optic fibers (Doric Lenses Inc., Quebec, Canada) positioned bilaterally

above the dorsal DG. Tetrodes were constructed by twisting together four insulated tungsten wires (12.7 mm diameter, California

Fine Wire, CA, USA) which were briefly heated to bind them together into a single bundle. Each tetrode was loaded in one cannula

attached to a 6 mm long M1.0 screw to enable its independent depth manipulation. A separate group of mice were implanted with

unilateral single-shank 64-channel silicon-probe (model: ASSY-236 H3, 8 mm; Cambridge Neurotech, Cambridge, UK; stereotaxic

coordinates from bregma: anterior-posterior: -2.0; mediolateral: -1.7 mm); these mice did not receive prior viral injections.

Recording procedures
Following the implantation surgery, mice recovered for at least seven days before familiarization to the recording procedure. Mice

were handled daily and exposed to the sleep-box for > 0.5 h per day for at least four days. During this period, tetrodes / silicon-probes

were slowly lowered to the proximity of the cell layers. Once at the correct depth, silicon-probes were left in the same position for the

rest of the experiment. Tetrodeswere lowered into theCA1, CA3 pyramidal or DGgranule cell layers on themorning of each recording

day in search of multi-unit spiking activity, using the electrophysiological profile of the local field potentials including sharp-wave rip-

ples, gamma oscillations, and dentate spikes to further guide placement. Tetrodeswere left in position for�1.5–2 h before recordings

began on that day. At the end of each recording day, tetrodes were raised (�150 mm) to protect hippocampal the cell layers from

potential mechanical damage overnight. We lowered again each individual tetrode on the next morning in search of cells, making

it unlikely that the recorded units are the same neurons across days. During recording sessions, mice explored open-field environ-

ments (41 cm diameter cylinder, or 41 3 41 cm square box, both with 30 cm high walls), or were placed in a sleep box containing

sawdust bedding and nesting material (123 123 28 cm, length3 width3 height). The instantaneous speed and the theta-to-delta

ratio profiles for DS and SWR events corresponded to those of sleep (Figures S1G and S1H). However, in the absence of electromy-

ography signals or other additional signals in defining a sleep stage, we here refer to sleep/rest. Each open-field or sleep box

recording session lasted �15-30 min. Experiments were performed under dim light conditions (�20 lux) with low-level background

noise (�50 dB).

Light delivery
A 561 nm diode pumped solid-state laser (Crystal Laser, model CL561-100; distributer: Laser 2000, Ringstead, UK) was used to

deliver green-yellow light bilaterally to the dorsal DG (�2-4 mW) via a 2-channel rotary joint (Doric Lenses Inc.).

Multichannel data acquisition
Electrode signals were amplified, multiplexed, and digitized using a single integrated circuit (headstage) located on the head of the

animal (RHD2164, Intan Technologies, USA; http://intantech.com/products_RHD2000.html). The amplified and filtered (pass band

0.09 Hz to 7.60 kHz) electrophysiological signals were digitized at 20 kHz (RHD2000 Evaluation Board) and saved to disk with the

synchronization signals from the positional tracking and laser activation. To track the location of the animal, three LEDs were

attached to the headstage and captured at 25 frames per second by an overhead color camera.

Spike sorting and unit isolation
Spike sorting and unit isolation were performed via automatic clustering software Kilosort50 (https://github.com/cortex-lab/KiloSort)

followed by graphically based manual recombination using cross-channel spike waveforms, auto-correlation histograms and cross-

correlation histogramswithin the SpikeForest framework (https://github.com/flatironinstitute/spikeforest)49. All sessions recorded on

a given day were concatenated and cluster cut together to monitor cells throughout the day. Each unit used for analyses showed

consistent spike waveforms and stable firing rates throughout the entire recording day. Tetrode location in the dorsal-ventral axis

for each recording day (Figure S1C) was determined using laminar LFP signatures, as described in detail in Lopes-dos-Santos

et al.52, and later confirmed in the ex vivo histology (Figure S1B).

Principal cell versus interneuron classification
Hippocampal principal cells were distinguished from interneurons by the trough-to-peak width of the spike waveform, as previously

described.52 Briefly, to evaluate the waveform consistency for each unit, we used the waveform with the maximum amplitude across

the tetrode channels for each cluster. We compared the prominence of a unit mean waveform amplitude to the standard deviation

stemming from all its spikes by computing a waveform score:

wvscore =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

ðwi=siÞ2
n

vuut

wherewi is the value of the mean waveform at sample i, si is the standard deviation at sample i across all spikes, and n is the num-

ber of waveform samples. This metric quantifies the relative magnitude of the mean waveform amplitude against the spike-to-spike
e2 Neuron 112, 1–14.e1–e8, November 20, 2024
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variability. Clusters with a waveform score above 0.75 and a refractory period violation below 2% (quantified as the proportion of

intervals shorter than 2 ms in the ISI distribution) were included for further analyses. We categorized units as either putative interneu-

rons or principal cells based on the width of their waveform as indicated by the trough-to-peak latency. In a prior dataset of �4,000

neurons, we noted a bimodal distribution in trough-to-peak latency. Fitting this with a 1-dimensional, 2-component GaussianMixture

Model (GMM), we set the classification threshold where the two Gaussian components intersect: units with latencies above were

labeled as putative principal cells, and those below as putative interneurons. The same inclusion criteria and classification proced-

ures were used for DG, CA3 and CA1 neurons. In total, this study includes 3,619 hippocampal principal cells (CA1, n = 1,322; CA3,

n = 573; DG, n = 1,724; from 134 total recording days in 25 mice).

Local field potential signals
LFP signals were processed by first applying an anti-aliasing filter (8th-order Chebyshev type I filter) to the wide band signals sampled

at 20 kHz. These signals were then down-sampled to 1,250 Hz using the decimate function from the signal submodule of Scipy

(version 1.11.2).

Dentate spike detection
Dentate spikes were detected during sleep sessions from LFPs recorded from tetrodes located in the DG granule cell layer or silicon-

probeswith recording contacts in the DGgranule cell layer. In silicon-probe recordings, we initially subtracted the LFP signals from all

channels using a reference channel found in the stratum oriens. LFPs were band-pass filtered (1–200 Hz, using a 4th order Butter-

worth filter). The mean and standard deviation of the LFP amplitude were calculated across the entire sleep session and peaks that

exceeded a threshold of six times the median absolute value of the filtered signals were designated as dentate spikes. The time bin

with the largest local maximumwas taken as the peak of the dentate spike, and this timestamp was recorded. If more than one peak

appeared within a 50 ms frame, we retained only the highest amplitude peak. On recording days with several tetrodes in the DG, we

used the tetrode with the largest mean DS amplitude to select DS event timestamps. Across all tetrode recordings we detected

32,215 DS events in total (mean ± SEM: 441.3 ± 29.2 per day, from 73 recording days in 12 mice); in silicon-probe recordings we

detected 15,067 DS events in total (mean ± SEM: 1676.1. ± 316.5 per day, from 8 recording days in 3 mice).

Sharp-wave ripple detection
For the LFPs of each pyramidal CA1 channel, we subtracted the mean across all channels (common average reference), band-pass

filtered for the ripple band (80–250 Hz; 4th order Butterworth filter) and their envelopes (instantaneous amplitudes) were computed by

means of the Hilbert transform. The peaks (local maxima) of the ripple band envelope signals above a threshold (5 times the median

envelope of that channel) were regarded as candidate events. The onset and offset of each event were determined as the time points

at which the ripple envelope decayed below half of the detection threshold. Candidate events passing the following criteria were

determined as SWR events: (i) ripple band power in the event channel was at least twice the ripple band power in the common

average reference (to eliminate common high frequency noise); (ii) each event had at least four ripple cycles (to eliminate events

that were too brief); (iii) ripple band power was at least twice the supra-ripple band defined as 200-500 Hz (to eliminate high frequency

noise, not spectrally compact at the ripple band, such as spike leakage artefacts). For events passing these criteria, the local

maximumof each envelope was taken as the peak of the SWR, and these timestampswere recorded. On recording days with several

tetrodes in the CA1 pyramidal layer, we used the tetrode with the largest mean ripple envelope amplitude to select SWR events. In

tetrode recordings we detected 65,370 SWR events (mean ± SEM: 895.0 ± 82.3 per day, from 73 recording days in 12 mice).

Place maps
To generate place maps, we divided the horizontal plane of the recording enclosure into spatial bins of 1.43 1.4 cm to generate the

spike count map (number of spikes fired in each bin) for each neuron and the occupancymap (time spent by the animal in each spatial

bin) in each task session. All mapswere then smoothed by convolutionwith a two-dimensional Gaussian kernel (s.d. = 1.2 bin widths).

Finally, spatial rate maps were generated by normalizing the smoothed spike count maps by the smoothed occupancy map.

Spatial Information
The amount of spatial information conveyed by the spike train of a given cell was calculated using the formula proposed by Skaggs

et al.53:

Information per spike =
XN
i = 1

pi

li

l
log 2

li

l

where i = 1, 2..N represents each spatial bin of the environment, pi is the probability of occupancy of bin i, li is themean firing rate in

bin i, and l is the mean firing rate of the cell over all spatial bins.
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Peri-event time histograms (PETHs)
For analysis, we excluded all DS and SWR events that occurred within 50 ms of one another. We constructed PETHs over 400 ms

windows, 200 ms either side of the peak DS amplitude or the peak of the SWR envelope, using a 1 ms bin width. The mean firing rate

of each neuron was calculated during each 1 ms bin over the 400 ms window for each event. Z-scored firing rates were generated

(over the DS-triggered or SWR-triggered average) separately for each neuron by calculating the mean and standard deviation over

the 400 ms PETH:

zi =
ðxi � xÞ

s

where zi is the Z score at time bin i, xi is the firing rate in time bin i, x is the mean firing rate across all time bins, and s is the standard

deviation of the firing rate across all time bins. The Z-scored firing rate of each neuron was then smoothed using a 3-point moving

average to eliminate spurious peaks in low firing rate neurons. For a cell to be classified as significantly activated during DS and/or

SWR events, the firing rate within ± 20ms of the event peak had to be > 3 standard deviations (s.d.) above baseline (calculated as the

mean firing rate over the 400 ms window). We also calculated the proportion of activated cells as a function of activation threshold

(2 < Z score < 4; Figures S2H and S3E).

Current source density analysis

Current sources and sinks were estimated from LFP recordings taken from single-shank 64-channel silicon-probes spanning the so-

mato-dendritic axis of CA1 principal cells and reaching the inferior blade of the DG. LFP signals were first down-sampled to 1250 Hz.

The current source density54 unscaled signal at time t and electrode n, CSD[t]n, was estimated as:

CSD½t�n = � �
LFP½t�n� 1 � 2 3 LFP½t�n + LFP½t�n+1

�
where LFP[t]n�1, LFP[t]n and LFP[t]n+1 are the LFP signals at time t recorded from neighboring electrodes (n�1 and n+1 are the chan-

nels immediately above and below n, respectively, with 20 mm spacing between electrodes). The silicon-probe recording site in the

pyramidal layer was identified as the one with largest ripple-band power. We defined the location of radiatum and lacunosum mo-

leculare layers according to the sharp-wave and theta laminar profiles, as previously described.52 We sorted dentate spike events

into type 1 (DS1) or type 2 (DS2) in the following way. First, we calculated the CSD estimates for all DSs at the peak of each event

and used PCA to find the first two Principal Components from the resulting CSD traces. These principal components had as

many dimensions as the number of silicon-probe channels (64). We then used a 2-component Gaussian Mixture Model to classify

the events based on their projection onto the first two principal components. This consistently resulted in two event classes having

the strongest sinks in different areas of themolecular layer. In line with previous research,22,24 we classified the events with the stron-

gest sink in the outermost part of the molecular layer as DS1, and events with their sink closer to the granular layer as DS2. Based on

CSD classification, event proportions were DS1: 0.35; DS2: 0.65 (5274 DS1 versus 9793 DS2, based on 15,067 events from 8

recording days in 3 mice).

Linear discriminant analysis classifier
To distinguish between DS1 and DS2 events using only the LFP traces, we trained a linear discriminant analysis (LDA) classifier using

silicon-probe recorded LFPs from the granule cell layer (https://doi.org/10.5281/zenodo.10034433). LFP signals were first down-

sampled to 1250 Hz and low-pass filtered at 50 Hz. We extracted 400 ms epochs centered around the peak of each DS (-200

to +200 ms, with 0.8 ms bin width), providing 500 time-based features (dimensions), one for each time bin, for each LFP trace.

We then performed PCA on all silicon-probe-recorded DS LFP traces (15,067) to extract the number of components explaining

90% of the variance. This resulted in 16 principal components, which were then used to train a LDA classifier. We generated 20

models by, each time, randomly selecting 75% of the dataset, which was labelled as DS1 or DS2 based on the CSD classification

described above, and then testing the classifier on the remaining (unlabeled) 25% of data. The classifier success rate was: median

(IQR) = 85.4 (85.3–85.6) %. We then used the model with the highest accuracy to classify DS1 and DS2 events from LFPs recorded

from the granule cell layer in our tetrode-recorded data. From tetrode-recorded LFPs, the proportions of type 1 and type 2 DS events

were: median (IQR) DS1 = 0.34 (0.25–0.38); DS2 = 0.66 (0.62–0.75), based on 10,337 DS1 versus 21,740 DS2 events in 73 recording

days in 12 mice.

Population spiking vectors

We generated event-based hippocampal population vectors of instantaneous principal cell spiking for every DS and SWR event us-

ing 50mswidewindows centered on the peak of the DS or the peak envelope of the CA1 ripple (±25ms from the peak). In addition, we

calculated the spiking activity of hippocampal principal cells in equivalent 50 ms (‘no event’) control epochs, that contained neither

DS nor SWRs. Baseline periods were selected from the same sleep sessions and excluded all epochs ± 250 ms either side of any DS

or SWR events. To calculate the proportion of coactive neurons in each time window, we calculated the number of simultaneously

active hippocampal principal cells (i.e., cells firing at least one spike during the 50 ms window) by the total number of simultaneously

recorded hippocampal principal cells. We then calculated the mean proportion of coactive cells for each recording session. For in-

clusion in these analyses, each recording session required aminimumof 100 of each type of event (DS1, DS2, SWR) and aminimumof

20 simultaneously recorded hippocampal principal cells.
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Population-level sparsity

The sparsity S of a given population firing vector x was calculated using the Gini index33,34,55 as:

S =

PN
i = 1

ð2i � N � 1Þxi

N
PN
i = 1

xi

where x is the population vector containing, in ascending order, the spike counts discharged by each principal cell in a 50 ms time

window (centered on the peak of the SWR, DS), N is the length of that vector (i.e. the number of simultaneously recorded principal

cells), and i is the rank of spike counts in ascending order. Population vectors where the total number of spikes is more evenly distrib-

uted between neurons have a lower Gini index (lower sparsity) than population vectors where the total number of spikes is concen-

trated in a few neurons (higher sparsity).

Logistic regression classifier

Weused a logistic regression classifier to distinguish between population vectors of hippocampal principal cell spiking activity during

DS, SWR, or equivalent duration (50 ms) control vectors that were taken from 200–250 ms periods before or after the peak of either

the DS or SWR events. For each recording session, we generatedmatrices of these population vectors (cells3 epochs) for these four

different event-types, and then binarized the spike counts (i.e., spike count > 0 = 1, else 0) to control for the influence of firing rate

differences between neurons. For each recording day, we used the event with the lowest number of epochs to determine the training

set size – for example, if there were 200 DS events, we used 75% (150 population vectors) as the DS training set, and randomly sub-

sampled the SWR matrix for 150 SWR population vectors (with identical principal cells). This way, the training input to the classifier

was balanced across event types. Similarly, the testing set consisted of the remaining (unlabeled) 25%of population vectors from the

DS population vectors plus an equivalent number of SWR population vectors (e.g., 50 DS population vectors and 50 SWR population

vectors, subsampled from the remaining SWR testing matrix). For each recording day, we ran three models: one to classify event

epochs, one to classify pre-event epochs and one to classify post-event epochs. Model accuracy was measured as the proportion

of correctly classified events (DS versus SWR, or pre-DS versus pre-SWR, respectively).

Peer-to-peer coactivity analysis

We constructed hippocampal population graphs that represent the coactivity relationships between all pairs of principal cell spike

trains recorded during a given sleep or exploratory session. These coactivity graphs were computed using 50 ms time windows

for DS and SWR events and theta cycles as time windows for active exploratory sessions. To further control for the shared influence

of the general network activity on peer-to-peer coactivity, we used for any two neurons ði; jÞ the regression coefficient b ij obtained by

fitting the GLM (Figure 3A):

xj � bijxi +aijP

where xj; xi are the Z-scored event-nested spike trains of individual neurons j (the target) and i (the predictor), and P is the summed

activity of the other N � 2 neurons,

P =
XN�fi;jg

n = 0

xn

with aij weighting the influence of the population contribution to the activity of target neuron j.

The recorded neurons (and their coactivity associations) are therefore the nodes (and their edges) in the coactivity graph of each

task session. We described each graph by its adjacency matrix, A, as the N 3 N square matrix containing the pairwise coactivity

relations within the network, yielding a weighted graph with no self-connections:

A =

0
@ b0;0 / b0;N

« 1 «
bN;0 / bN;N

1
A

with bi;i = 0 ci in N, and the symmetry in the weights of the network being ensured by setting A = A+AT

2 to form an undirected graph.

Clustering coefficient
We computed the clustering coefficientCi to characterize the network’s local coactivity structure by scoring the triadic firing relation-

ships established by each neuron i with the other neurons in the population, using the formula proposed by Onnela et al.56–58:

Ci =

P
jq

�cbij
cbiq

cbjq

�1=3
kiðki � 1Þ

where j and q are neighbors of neuron i, all edgeweights are normalized by themaximum edgeweight in the network bb = b=maxðbÞ,
and ki is the degree of neuron i, which in these weighted graphs with no self-connection is equal to the number of neurons minus one.
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Note that this formula accounts for negative edges, yielding a negative value when there is an odd number due to the negative edges

in the triad; it is positive otherwise. This method to assess firing relationships in the neuronal population of the hippocampus as a

signed network where both positive and negative edges (i.e., correlated and anti-correlated spike trains) coexist leverages from

past studies investigating community organization in social networks, indicating that triads represent the smallest motif capturing

‘‘structural balance’’ in patterns of peer-to-peer relationships.59

Single-neuron coactivity strength
We defined the single-neuron coactivity strength as the average pairwise coactivity relation of a given node in a weighted graph. As a

reference, the strength in a weighted graph can be compared to the degree in a binary graph, which accounts for the number of the

node’s neighbors. Here, the strength Si of a node i is the average across all the weights bij of the edges projected from that node:

Si =

PN
j = 0

bij

N

where N is the number of neurons j that node i projects to.

Population vector similarity
Population vectors of hippocampal principal cell spiking activity were generated for baseline, SWR, and DS events as described

above, yielding separate (cell 3 event number) matrices of spike counts for each event-type. To remove potential biases caused

by unequal numbers of events, we used the event-type with the fewest epochs to determine the final matrix size. For example, if there

were 200 DS events in a given recording session, we randomly subsampled the SWR and baseline matrices to extract 200 SWR and

200 baseline population vectors (with identical principal cells) for comparison. Next we binarized these matrices (spike count > 0 = 1,

else 0). Then we assessed the self-similarity for each event matrix (cells 3 event number) by computing the Pearson correlation co-

efficient for every pair of population vectors from the same event-type, and then calculating the mean across all of these correlation

coefficients. As an alternative, we also calculated the Jaccard similarity coefficient (J), whichmeasures the size of the intersection (i.e.

overlap in active units) between pairs of population vectors (A, B), divided by the size of the union:

JðA;BÞ =
jAXBj
jAWBj

Population dimensionality
We estimated the dimensionality of the principal cell population firing structure during SWRs andDSs from activity matrices that were

matched for neuron identity and the number of DS and SWR events. We applied Principal Component Analysis (PCA) to each activity

matrix, using the number of simultaneously recorded principal cells as themaximum number of components. Eachmatrix required at

least 20 principal cells for inclusion in the analysis. We then extracted the number of components explaining 90% of the variance in

these population vectors and scaled this by the total number of neurons in each matrix (Figures 3L, S4M, and S4P). We also show

dimensionality for a range of explained variance values (Figures S4N and S4O). Note that the ratio of DG to CA cells in these matrices

did not significantly affect the dimensionality estimate (Table S1).

Theta-cycle detection
Theta cycles were detected as described in Lopes dos Santos et al. Briefly, we used masked Empirical Mode Decomposition48;

https://pypi.org/project/emd/) to separate CA1 LFPs into oscillatory components termed intrinsic mode functions (IMFs). We delin-

eated individual theta cycles from their troughs and peaks, i.e. the local maxima and minima of the theta IMF. Theta cycles were

defined as peak-trough-peak sequences with trough-peak and peak-trough intervals between 31-100 ms and peak-to-peak dis-

tances between 71-200 ms. Note that this method is designed to detect chains of theta cycles but to do so it identifies each cycle

independently.

Reactivation of waking coactivity patterns
We leveraged our pairwise peer-to-peer coactivity measure (as described above; Figure 3A) to estimate DS and SWR reactivation.

With this, we compared the tendency of principal cell pairs to co-fire in theta cycles during exploration (theta coactivity) with the ten-

dency to co-fire in DS (or SWR) during the following post-exploration sleep/rest period (post-DS or post-SWR co-firing), controlling

for their baseline co-firing in the pre-exploration sleep/rest period before (pre-DS or pre-SWR co-firing) and mouse identity, using a

linear mixed model:

Post� b0 + btheta + bpre + ʋmouseID + e

where b0 is the intercept of the regression line, btheta is the regression coefficient for the theta co-firing, bpre is the regression co-

efficient for the pre-exploration offline co-firing (in DS or SWR events), ʋmouseID is the individual mouse identity, and e the error term.

Likewise, we compared the tendency of principal cell pairs to co-fire in theta cycles during exploration (theta coactivity) with the
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tendency to co-fire in DS or SWR during the pre-exploration sleep/rest period (pre-DS or pre-SWR co-firing), controlling for their

post-exploration co-firing in the sleep/rest period after (post-DS or post-SWR co-firing) and mouse identity, using the reverse linear

mixed model:

Pre� b0 + btheta + bpost + ʋmouseID + e

From these LMMs, we extracted the b coefficients predicting post-SWR or post-DS coactivity from theta coactivity (controlling for

pre-SWR or pre-DS coactivity, respectively) and tested their significance in two ways. First, we performed control GLMs using the

pre-DS (or pre-SWR) coactivity as the dependent variable and the theta coactivity and post-DS (or post-SWR) coactivity as the in-

dependent variables. In thesemodels, pre-event, post-event and theta coactivity were entered as fixed-effects andmouse identity as

random-effects, using the restricted maximum likelihood method (implemented using the MixedLM class, and fit() method with

default parameters, from the statsmodels library (Seabold and Perktold, 2010) in Python3.10). Second, we constructed a random

probability distribution of b weights for theta coactivity by shuffling the cell pair identity, thereby generating a null distribution (based

on 1000 LMMs, each time randomly shuffling cell-pair identity).

Closed-loop optogenetic interventions
For DS-informed interventions, real time detection of DSs was achieved by first high pass filtering the DG LFP signals (5 Hz) using the

on-board signal processing capabilities of the Intan RHD evaluation board (RHD2000, Intan Technologies, USA) and triggering a laser

pulse if the LFP signal exceeded a voltage-threshold. Thresholds for DS-onset detection were set for eachmouse during a sleep ses-

sion at the start of each recording day so that DS events were consistently detected (�3 S.D. above mean signal amplitude).

Threshold detection triggered a digital transistor-transistor logic (TTL) output pulse from the RHD interface to a Master 8 stimulation

timing device (A.M.P.I., Jerusalem, Israel), which in turn sent a 100 ms duration square-wave pulse to activate the laser. In the ‘DS-

synchronized’ condition, the laser was triggered with zero latency from DS-onset, whereas in the ‘DS-delay’ condition the laser was

triggered 100 ms after DS detection (Figures 5 and 6). The rates of false negatives (DS not triggering laser pulse) and false positives

(laser pulse emitted for LFP trace not meeting DS criteria) were 1.8±0.6% and 4.7±0.4%, respectively. The laser delivered yellow-

green light (561-nm) into the dentate gyrus, which in DGGrm2::ArchT mice activated the outward proton pump, Archaerhodopsin T

to suppress spiking activity in DG granule cells. To investigate changes in firing rates in individual hippocampal principal cells during

light-delivery, we constructed PETHs over 400mswindows, 200ms either side of DS-onset, using a 1ms bin width and extracted the

peak firing rate during DS-synchronized light-delivery versus DSs with no light delivery. In addition, we Z-scored the binned spike

trains and calculated the mean Z score between DS-onset and 100 ms after DS-onset for each hippocampal principal cell during

DS-synchronized light-delivery versus the equivalent 100 ms no-light period in the DS-delay condition.

For SWR-informed interventions, the Intan evaluation board was configured with firmware enabling additional filtering. Five oper-

ations were performed on the continuously acquired CA1 wideband LFP signal to provide a real time estimate of the instantaneous

power in the ripple-band.60,61 (1) To enable low-latency processing, the signal was first down-sampled to 2.5 kHz by averaging the

raw 20 kHz data stream with a sliding window of 8 samples with no overlap. (2) This signal was then high-pass filtered (using a 1st

order digital infinite impulse response filter with a corner frequency of 1.6 Hz to remove amplifier offset and electrode drift). Next, the

signal was (3) band-limited to 100–200 Hz with a 4th order Butterworth filter, (4) rectified by taking its absolute value, and (5) amplified

128-fold and smoothed with an exponential moving average operation over an equivalent window size of 32 samples (12.8 ms). To

detect SWR events in this band-power estimate, the threshold level for eachmousewas set during a sleep session at the start of each

recording day to ensure consistent (�3 S.D. abovemean power) detection throughout the day. On detecting a threshold crossing, the

Intan recording controller delivered a 5 ms TTL pulse to a Master 8 stimulation timing device (A.M.P.I., Jerusalem, Israel). Analogous

to the DS-informed interventions, in the ‘SWR-synchronized’ condition the laser was triggered with zero latency from SWR-onset,

whereas in the ‘SWR-delay’ condition the laser was triggered 100 ms after SWR detection.

Recognition memory tasks
On each day of both the novel-object and novel-position recognition tasks, mice explored a square-walled open field (Figure 6A; the

‘object arena’) containing four objects, each positionedmidway along a given wall,�1cm from the wall edge. Objects used were�33

33 4 cm (width3 depth3 height) objects (e.g., Lego� blocks or other similar items). During the first session in the object arena, mice

explored four completely novel objects (‘sampling’ session, 10 min). After the sampling session, mice were placed into a sleep box

where they received DG-targeting light delivery that was either synchronized to event detection (DS-synchronized or SWR-synchro-

nized condition) or delayed by 100 ms from event detection (DS-delay or SWR-delay condition), as described above (sleep/rest ses-

sion, 20 min). In the novel object recognition task, before the start of the next test session, one of the four objects was replaced with a

different (and completely novel) object, and mice then explored the four objects again (‘test 1’ session, 10 min). This process was

repeated, with another sleep session (�20 min, with either DS-sync or DS-delay light-delivery), followed by another object exploration

session with one completely novel object and three previously encountered objects (‘test 2’ session, 10 min). In the novel position

recognition task, the locations of two of the initially sampled objects were swapped (e.g. North and West), whereas the other two ob-

jects remained in their original positions. In the novel position task, only DS-the synchronized andDS-delay conditions and only the first

test sessionwere used. During each test session, wemeasured the time spent exploring each object andwe calculated the percentage

time spent investigating the novel object (or novel positioned objects) versus the mean percentage time spent investigating the familiar
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objects (i.e., those objects seen in the previous session and/or those in the same locations). For analysis, four ‘object-zones’ were

created by dividing the arena into nine equal sized square zones (�123 12 cm), such that four of these zones contained the objects.

Time spent in the object zone was determined directly from the automated tracking data. Between sessions, the floor of the maze and

the objects were cleaned with water. On any given day, mice received the same light-delivery condition.

Tone fear conditioning task
Fear conditioning was conducted in one of four operant chambers eachwith distinct visual cues (ENV-307A, Med Associates Inc., IN,

USA). Mice were exposed to five auditory cues (either 2900 Hz tone or white noise, 72 dB, 30s duration), each co-terminating with a

mild foot-shock (0.3mA, 0.5 s). Themean ITI was 74s (range: 60 to 90s). Immediately after fear conditioning, micewere removed from

the operant chamber and placed into the sleep box where they received DS-sync or DS-Delayed DG cell silencing for 45 minutes.

For the recall session, mice were then placed into a different operant chamber than the one where they received conditioning (to

reduce the impact of contextual cues on recall). Mice were exposed to the same five auditory cues but no foot-shocks were given.

Fear memory was assessed bymeasuring freezing responses during the first two cues presented in the recall session (before extinc-

tion occurs) and comparing these responses to freezing responses to the first cue during training (before any shocks were given).

Freezing was measured using automated movement detection software (ezTrack, 62) and expressed as a % of tone duration (i.e.

freezing for 15s during a 30s tone = 50% freezing).

Tissue processing and immunohistochemistry
At the completion of experiments, mice were deeply anesthetized with pentobarbital and perfused transcardially with 0.1 M PBS fol-

lowed by 4% paraformaldehyde (PFA) in PBS. Brains were extracted and kept in 4% PFA for �24–72 h and then transferred to PBS

(with 0.05% sodium-azide). For tetrode localization, free-floating sections (50 mm) sections were mounted on slides and imaged at3

5 using a Zeiss microscope (AxioImager M2; Zeiss, Plan-Neofluar 53 /0.16 objective). For immunostaining, free-floating sections

(50 mm) were rinsed in PBS with 0.25% Triton X-100 (PBS-T) and were blocked for 1 hour at�20�C in PBS-T with 10% normal donkey

serum (NDS). Sections were then incubated with primary antibodies diluted in 3% NDS blocking solution and incubated at 4�C for

72 hours (GFP anti-chicken, 1:1,000, Aves Labs, catalog no. GFP-1020; NeuN guinea pig, 1:500, Synaptic Systems, catalog no. 266

004). All sectionswere rinsed three times for 15min inPBS-T and incubated for 4 hours at�20�C in secondary antibodies in the blocking

solution (Cy3 donkey anti-guinea pig, 1:400, Jackson ImmunoResearch, catalog no. 706-165-148; goat anti-chicken 488, 1:1,000,

ThermoFisherScientific, catalog no. A-11039). Sectionswere then rinsed three times for 15min inPBS-T,with somesections then incu-

bated for 1minwithDAPI (0.5mgml�1, Sigma,D8417) diluted inPBS to label cell nuclei before three additional rinse stepsof 10min each

in PBS. Sections weremounted on slides, cover-slipped with Vectashield (Vector Laboratories, catalog no. H-1000) and stored at 4�C.
Sectionswerealsoused for anatomical verificationof the tetrode tracks. ImageswereacquiredusingaZeiss confocalmicroscope (LSM

880 Indimo, Axio Imager 2) with a Plan-Apochromat320/0.8 M27 objective and the ZEN (Zeiss Black 2.3) software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed in Python 3.8 (https://www.python.org/downloads/release/python-3816/) and Python 3.10 (https://www.

python.org/downloads/release/python-31011/), using the Python packages DABEST (Ho et al.63 ), scipy (Virtanen et al.64), numpy

(Harris et al.65), matplotlib (Hunter66), seaborn (Waskom67), pandas (McKinney68), scikit-learn (Pedregosa et al.69), statsmodels (Sea-

bold and Perktold70). Error bars, mean ± S.E.M unless otherwise stated. We used throughout this study a bootstrap-coupled esti-

mation of effect sizes, plotting the data against a mean difference between the left-most condition and one or more conditions on

the right and compare this difference against zero using 5,000 bootstrapped resamples. In these estimation graphics (DABEST plots),

each black dot indicates a mean difference and the associated black ticks depict error bars representing 95% confidence intervals;

the shaded area represents the bootstrapped sampling-error distribution. Bandwidth estimates for the kernel density estimate were

computed using the scikit-learn package. We used the DABEST package to calculate test statistics and p-values and visualize data.

The test statistic is the mean difference and the p-value is the is the probability of observing the effect size (or greater), assuming the

null hypothesis of zero difference is true. Paired permutation tests (or equivalent paired tests) were performed for repeated-measures

analyses and unpaired tests used for independent samples. Data distributions were assumed to be normal, but this was not formally

tested. Our results were replicable across mice and recording days. For the optogenetic interventions, the different closed-loop con-

ditions (DS-sync, SWR-sync, DS-Delay, and SWR-Delay) were experienced in a randomized order across days. In the object recog-

nition tasks, objects and their positions and the order of their replacement were randomized. Neural and behavioral data analyses

were conducted in an identical way regardless of the identity of the experimental condition from which the data were collected,

with the investigator blind to group allocation during analyses. No statistical methods were used to pre-determine sample sizes,

but our sample sizes are similar to or larger than those reported in previous publications. Inclusion criteria for well-isolated single units

were used as published in previous studies and are described in the corresponding subsections of the method details. For the pop-

ulation vector analyses (Figures 3 and S4), each recording session required a minimum of 100 of each type of event (DS1, DS2, SWR)

and a minimum of 20 simultaneously recorded hippocampal principal cells for inclusion.
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Figure S1. Tetrode locations and characterization of dentate spikes, related to Figure 1. 
(A) Triple-(DG-CA3-CA1) tetrode layout schematic. 
(B) Example histology showing tetrode tracks in DG, CA3, and CA1, with color-coded contours of  the 
pyramidal cell layers and the granule cell layer. 
(C) Histogram of  tetrode locations in the dorsal-ventral plane (CA1 tetrodes n=176; DG tetrodes n=244, 
CA3 tetrodes n=92, f rom n=73 sessions, 12 mice). 
(D) Examples of  mean ± SEM dentate spike (DS) local f ield potential (LFP) waveforms f rom individual 
mice.  



   

 

 

(E) Group mean ± SEM DS LFP waveform (n=73 sessions, 12 mice). 
(F) Kernel density estimates (KDEs) and boxplots for DS (lef t) and SWR (right) event durations (based on 
32,215 DS events and 65,370 SWR events, n=73 sessions, 12 mice). 
(G) DS and SWR events occur when mice are asleep or in quiet rest and not when they are active. The 
graph shows KDEs for the probability of  DS (blue) and SWR (orange) occurrence versus active behavior 
(gray) for a range of  movement speeds. Active behavior was determined f rom the theta-to-delta ratio 
(>2.4) f rom the CA1 LFP during open f ield exploration. 
(H) Estimation plot showing that DS and SWR events occur when the theta-to-delta ratio is low compared 
to active behavior. For this analysis, we def ined a minimum activity level (movement speed > 3 cm/s) 
based on the active behavior movement speed distribution (panel F) to include 99% of  the area under the 
curve. We then extracted the theta-to-delta ratio for speeds above this minimum and compared this 
distribution to the theta-to-delta ratio distributions during DSs and SWRs. Upper: raw data points (each 
point shows mean theta-to-delta power during one active behavior session or one sleep session), with the 
gapped lines on the right as mean (gap) ± s.d.  (vertical ends) for each event. Lower: dif ference (Δ) in 
theta-to-delta ratio between active epochs versus DS and SWR epochs computed f rom 5,000 
bootstrapped resamples and with the dif ference-axis origin (dashed line) aligned to active behavior (black 
dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). The test statistic 
is the mean dif ference, shown on the y-axis of  the lower plot. P-values are f rom unpaired permutation 
tests, active versus event, ***P < 0.001. 
(I) Cross-correlogram of  the probability of  DS occurrence with respect to SWRs. Note that there was a 
small increase in the probability of  DS around the time of  a SWR, with more than 90% of  DSs not 
occurring within ± 50 ms of  a SWR. Red dashed lines show peak of  event, gray dashed lines show ± 50 
ms f rom peak. 
(J) As for panel I but for SWR occurrence with respect to DSs. 
  



   

 

  



   

 

 

Figure S2. Dentate spikes activate hippocampal principal cells, related to Figure 1. 
(A) Top: Example spike waveform showing the trough-to-peak measurement for spike width. Scale bar 
100 µV and 0.5 ms. Middle: example auto-correlograms f rom individual DG, CA3 and CA1 principal cells. 
Bottom: example place maps f rom three individual (simultaneously recorded) DG, CA3 and CA1 principal 
cells illustrating the spatial distribution of  spiking activity . The number in the top right corner shows the 
maximum f iring rate of  the cell in its place-f ield. 
(B, C) Trough-to-peak width was used to classify principal cells versus interneurons. (B) Estimation plot 
showing that the trough-to-peak width is narrower in DG principal cells versus CA3 and CA1 principal 
cells. (C) Trough-to-peak width narrower in DG versus CA3 interneurons but is wider in DG versus CA1 
interneurons. Note that the trough-to-peak width for DG principal cells remains wider for DG principal cells 
than DG interneurons. 
(D) The auto-correlogram shape dif fers between principal cells and interneurons in DG, CA3 and CA1. 
Here, we used the Gini index to evaluate the sparsity in the spike probability distribution for each 1 ms bin 
of  the auto-correlogram (between 0 and +50 ms). This distribution was more unequal for principal cells in 
all three regions, hence a higher Gini index; and was more equal for interneurons, hence a lower Gini 
index. 
(E) The mean f iring rate is higher in hippocampal interneurons (iDG, iCA3, iCA1: recorded cells with a 
trough-to-peak width < 0.45 ms) versus hippocampal principal cells. 
(F) DG, CA3 and CA1 principal cells exhibit higher spatial information scores than interneurons in these 
respective regions. 
For B-F estimation plots, Upper: raw data points (each point shows one principal cell); Lower: dif ference 
(Δ) in trough-to-peak width, f iring rate, or spatial information (respectively) in DG versus CA3 and DG 
versus CA1. Other plot details as in Figure S1H. 
(G) Examples of  three individual principal cells’ z-scored f iring rates during DS (blue) and SWR (orange) 
events. The horizontal dashed line shows z-score = 3. 
(H) Percentage of  principal cells active during DS (lef t) versus SWR (right) events, as def ined by crossing 
various z-thresholds. 
(I) Percentage of  signif icantly activated principal cells , as def ined by a z-score > 3 (within ± 20 ms of  the 
event peak, shown at time 0 in G, during DS (lef t) and SWR (right) events. 
(J) Estimation plot showing the ef fect size for the dif ferences in the time point of  maximum neuronal 
spiking activity during DSs and SWRs in DG, CA3, and CA1 principal cells. Note that DG cells reached 
their peak f iring signif icantly before CA1 neurons during DSs; CA3 cells reached their peak f iring 
signif icantly before CA1 neurons during SWRs. Upper: raw data points (each point shows one principal 
cell that was signif icantly active (z > 3) during each event); Lower: dif ference (Δ) in time of  peak activation 
in DG versus CA3 and DG versus CA1. 
(K, L) Corresponding time course of  principal cell instantaneous f iring rate (z-score) during SWR (K) and 
DS (L) events.  
(M, N) Using the time to cross the z-score > 3 threshold, we observed that during DS events, DG principal 
cells increase their f iring activity signif icantly earlier than both CA3 and CA1 principal cells . Panel N is the 
corresponding estimation plot of  the response latency (i.e. when each cell crossed the z > 3 threshold 
relative to the event peak) showing that DG cells are active before CA3 and CA1 principal cells during 
DSs. Upper and lower plots as in panel J. 
(O, P) Estimation plots comparing the overall mean f iring rate of  each principal cell (calculated across the 
entire recording session) to its peri-event f iring rate (calculated as the mean f iring rate ± 5 ms around the 
peak of  the event) during DS (O) and SWR (P) events. Upper: raw data points (each point shows one 
principal cell’s mean rate and peri-event rate) in DG, CA3 and CA1; Lower: dif ference (Δ) in f iring rate 
between mean rate and peri-event rate for DG, CA3 and CA1 separately. Other plot details as in Figure 
S1H. 
For B-F,J,N-P, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
unpaired permutation tests, cell type versus cell type (B-F,J,N); or paired permutation tests, baseline 
(mean rate) versus event (O-P), *P < 0.05, **P < 0.01, ***P < 0.001.  



   

 

 

 
 
Figure S3. Current source density, local field potential profiles, and hippocampal principal cell 
spiking for DS1 and DS2 events, related to Figure 2. 



   

 

 

(A) Examples of  current source density (CSD) prof iles for individual Type 1 (DS1) and Type 2 (DS2) 
dentate spikes (two DS1 examples, two DS2 examples) recorded f rom a 64-channel silicon-probe. Left 
panel: the instantaneous CSD ±150 ms around the event peak. Right panel: the CSD amplitude at each 
depth (based on the mean amplitude f rom –25 to + 25 ms around the event peak). Stratum oriens: ori; 
pyramidal layer: pyr; stratum radiatum: rad; lacunosum moleculare: lm; hippocampal f issure: hf ; outer 
molecular layer: om; middle molecular layer: mm; inner molecular layer: im; granule-cell layer: gr. 
(B) Group mean ± SEM LFP waveforms for DS1 and DS2 events f rom silicon-probe recordings (8 
sessions, 3 mice). 
(C) Examples of  mean ± SEM LFP waveforms for DS1 and DS2 events f rom tetrode recordings in 
individual mice. 
(D) Group mean ± SEM LFP waveforms for DS1 and DS2 events f rom tetrode recordings (73 sessions, 12 
mice) 
(E) Percentage of  principal cells active during DS1 (lef t) versus DS2 (right) events, and as def ined by 
crossing various z-thresholds. 
(F) Percentage of  signif icantly activated principal cells, as def ined by a z-score > 3 (within ± 20 ms of  the 
event peak), during DS1 (lef t) and DS2 (right) events. 
(G-J) Peri-event time histograms (G,H) showing z-scored f iring rates ± 100 ms around the event peak and 
estimation plots (I,J) comparing overall mean f iring rate (calculated across the entire recording session) to 
peri-event f iring rate (calculated as the mean f iring rate ± 5 ms around the peak of  the event) for all 
principal cells during DS1 and DS2 events. DG n=921, CA3 n=388, CA1 n=887 principal cells (12 mice). 
Upper and lower plots as described in Figure S2O-P. 
(K) Percentage of  suppressed principal cells (i.e., cells with a z-score < 0 during the event peak) during 
DS1 and DS2 events. 
(L) Peri-event time histograms showing z-scored f iring rates ± 25 ms around the event peak for the lowest 
quartile of  activated principal cells (i.e., the 25% least activated / suppressed principal cells) during DS1 
events. (DG n=230, CA3 n=97, CA1 n=221 principal cells).  
For I and J, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
paired permutation tests, baseline (mean rate) versus event, ***P < 0.001.  



   

 

 

 
 



   

 

 

Figure S4. Distinct population coactivity structures in DSs versus SWRs, related to Figure 3. 
(A) Toy example illustrating construction of  principal cell × event spiking activity matrices using the 
population f iring vectors nested in 50 ms time windows centered on DSs, SWRs, or duration-matched 
(pre- and post-) control events. The proportion of  active cells in each column vector (B-C) was def ined as 
the proportion of  cells with a non-zero spike count during the individual time window. Logistic regression 
classif iers (D) were trained using 75% of  the population spiking activity vectors and tested with the 
remaining 25% of  vectors, on any given session. We used the event type with the lowest number of  
epochs to determine the training and testing set size and then randomly subsampled the other event 
matrix to generate the same number of  training and testing vectors for each event type, so that the 
classif ier was balanced across event types. Separate matrices and classif iers were utilized for event, pre-
event, and post-event epochs. For all of  the analyses below, the inclusion criterion was that the session 
had to contain a minimum of  20 principal cells and 100 events of  each type. 
(B) Estimation plot showing the mean proportion of  cells active during DS, DS1, DS2 and SWR events 
relative to equivalent duration-matched baseline periods during sleep when none of  these events were 
present. Upper: raw data points (each point shows mean proportion of  active cells in each vector across 
one recording session), with the gapped lines on the right as mean (gap) ± s.d. (vertical ends) for each 
event type. Lower: dif ference (Δ) in proportion of  active cells between baseline epochs versus DS, DS1, 
DS2 and SWR epochs. Note that all events contained more active cells than baseline epochs but there 
was no statistical dif ference between the proportion of  active cells in DS2 versus SWR events. 
(C) Likewise, shown is the proportion of  cells active during Baseline, DS1, DS2 and SWR events split by 
hippocampal subregion. Upper: raw data points (each point shows mean proportion of  active cells by 
subregion), with the gapped lines on the right as mean (gap) ± s.d. (vertical ends) for each subregion. 
Lower: dif ference (Δ) in proportion of  active DG cells versus CA3 and CA1 cells. 
(D) Classif ier performance for SWR versus DS1, SWR versus DS2, and DS1 versus DS2 population 
vectors. Dashed line shows chance performance. 
(E) Estimation plot showing the population vector similarity for all event types compared to their control 
condition in which each event vector was correlated with ‘shuf f led’ population spiking vectors, where the 
cell identity was randomly shuf f led. Upper: raw data points (each point shows mean population similarity 
for one recording session or shuf f led equivalent), with the gapped lines on the right as mean (gap) ± s.d. 
(vertical ends) for each event. Lower: dif ference (Δ) in population similarity between real data for each 
event and its shuf f led equivalent. 
(F) Estimation plot showing population vector similarity for DS and SWR events compared to baseline 
control, as in Figure 3F, but separately for CA (lef t) and DG (right) principal cells. Upper: raw data points 
(each point shows mean population similarity by event type for one recording session), with the gapped 
lines on the right as mean (gap) ± s.d. (vertical ends) for each event type. Lower: dif ference (Δ) in 
population similarity between baseline epochs versus DS and SWR epochs.  
(G) Our results showing signif icantly higher population vector similarity for DS and SWR events versus 
baseline, and for SWR versus DS events (Figure 3F) were recapitulated at the level of  individual mice 
(8/8 mice for DS and SWR events versus baseline, 7/8 mice for SWR versus DS events; p < 0.05 
permutation tests for DS versus baseline, SWR versus baseline, DS versus SWR with n=number of  
population vector pairs per mouse). Black traces show individual mice ± SEM (calculated on the number 
of  population vectors per mouse); red trace shows the group mean ± SEM (calculated on n=8 mice). 
(H) Our results using the Pearson correlation to compare population vector similarity (Figure 3F-G) were 
replicated using the Jaccard similarity measure. Estimation plot showing the population vector similarity 
for all event types compared to baseline epochs. Upper: raw data points (each point shows mean 
population similarity by event type for one recording session), with the gapped lines on the right as mean 
(gap) ± s.d. (vertical ends) for each event type. Lower: dif ference (Δ) in population similarity between 
baseline epochs versus DS, DS1, DS2 and SWR epochs. 
(I) Estimation plot showing mean clustering coef f icients (as Figure 3K) but for CA1-3 cells only (lef t panel) 
or DG cells only (right panel), which also show higher clustering coef f icients for DS events. 
(J) Our results showing signif icantly higher clustering coef f icient for DS and SWR events versus baseline 
and DS versus SWR events (Figure 3K) were recapitulated at the level of  individual mice (8/8 mice for DS 
and SWR events versus baseline, 7/8 mice for SWR versus DS events ; p < 0.05 permutation tests for DS 
versus baseline, SWR versus baseline, DS versus SWR with n=number of  neurons per mouse). Black 
traces show individual mice ± SEM (calculated on the number of  neurons per mouse); red trace shows 
the group mean ± SEM (calculated on n=8 mice). 
(K) Estimation plot showing that the neuronal coactivity graphs nested in both DS 1 and DS2 events 
contained signif icantly stronger triads of  coactive nodes compared to SWR graphs, as indicated by higher 
mean clustering coef f icients. This was notably the case for DS2. 
(L) Single-neuron coactivity strength. As an alternative method to the triadic clustering coef f icient 
parameter, we also show in this estimation plot that SWR and DS events dif fer in neuronal coactivity 
strength and f rom baseline epochs. We def ined the single-neuron coactivity strength as the average 



   

 

 

pairwise coactivity relation of  a given neuron with its population peers. For any two neurons (𝑖, 𝑗), we 

obtained the regression coef f icient 𝛽 f rom a generalized linear model predicting the spike discharge of  

neuron 𝑗 f rom the activity of  neuron 𝑖 while regressing out the activity of  the remaining population.  The 

strength of  neuron 𝑖 is then the average across all the weights 𝛽𝑖𝑗. 

(M) Estimation plot showing population dimensionality required to explain 90% of  the variance in DS and 
SWR events compared to baseline control separately for population vectors containing only CA (lef t) or 
DG (right) principal cells. Upper: raw data points (each point shows mean population dimensionality by 
event type for one recording session), with the gapped lines on the right as mean (gap) ± s.d. (vertical 
ends) for each event type. Lower: dif ference (Δ) in population dimensionality between baseline epochs 
versus DS and SWR epochs. Importantly, considering here DG and CA regions separately for the 
dimensionality analysis bears the caveat that, to comply with our criterion of  at least 20 simultaneously 
recorded principal cells for each recording session, these analyses use far fewer recording days and the 
resulting neuronal population vectors are much smaller (n=17 days, n=25.8±1.0 cells per vector for CA; 
n=15 days, n=25.5±0.9 cells per vector for DG) than the data presented in Figure 3K (n=34 days, 
n=37.2±1.8 cells per vector), which limits the comparison.  
(N) PCA to compare the dimensionality of  SWR versus DS matrices (cell ×  event number), matching the 
number of  events for each event type, determining the number of  components required to explain 70–
95% of  the variance. In each case, the dimensionality was signif icantly higher f or DS versus SWR events 
at α < 0.05 (Wilcoxon test for paired samples, one-tailed). 
(O-P) The number of  components required to explain equivalent amounts of  variance was lower in DS1 
versus SWR and DS2, and higher in DS2 versus SWR events (N); as illustrated by the estimation plot in 
panel O, showing that a lower number of  principal components was required to explain 90% of  the 
variance across the population vectors nested in DS1, compared to SWR and DS2 events. 
For B-F,H-I,K-M,P, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black 
dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are 
f rom paired permutation tests, baseline versus event (B,F,H,I,L,M), event versus pre-event and event 
versus post-event (D), data versus shuf f le (E), event versus event (K,P); or unpaired permutation tests, 
cell type versus cell type (C), *P < 0.05, **P < 0.01, ***P < 0.001.  



   

 

 

 
 
Figure S5. Offline reactivation of theta population coactivity in individual mice, related to Figure 4. 
(A) Raw data examples of  hippocampal principal cells spiking activity during active exploration marked by 
theta oscillations (Lef t) and of f line sleep/rest (Right; example SWRs shown). Scale bars 0.5 mV and 150 
ms (Lef t) or 50 ms (Right). We applied our peer-to-peer coactivity analysis (Figure 3A) to obtain the 
waking patterns of  population coactivity nested in theta cycles during exploration, and the of f line patterns 
of  population coactivity nested in either DS or SWR events during sleep/rest before and af ter exploration. 
With these, we next computed DS and SWR reactivation by measuring the tendency of  the peer-to-peer 
theta f iring associations to reoccur in post-exploration sleep/rest DS (or SWR) events, while controlling for 
prior pre-exploration DS (or SWR) coactivity, using a linear mixed model (Figure 4A). 



   

 

 

(B) SWR reactivation in individual mice (measured by the β coef f icients of  the linear regression that 
predicted post-exploration SWR coactivity f rom waking theta coactivity, controlling for pre-exploration 
SWR coactivity). 
(C) DS reactivation in individual mice (measured by the β coef f icients of  the linear regression that 
predicted post-exploration DS coactivity f rom waking theta coactivity, controlling for pre-exploration DS 
coactivity). 
(D-E) Distribution of  peer-to-peer coactivity values (β coef f icients) for SWRs (D) and DSs (E) in the pre- 
and post-exploration sleep/rest sessions. Signif icance was tested using the Wilcoxon test for matched 
pairs: post > pre for DSs (U=1198580, n=7310, p < 0.001); and for SWRs (U=12839635, n=7310, p < 
0.001). 
(F-G) Estimation plots showing that the neuronal coactivity graphs nested in DSs contained signif icantly 
stronger triads of  coactive nodes compared to SWR graphs, as indicated by higher mean clustering 
coef f icients, during both pre- and post-exploration sleep sessions (F). Also, DSs and SWRs contained 
signif icantly stronger triads of  coactive nodes during post - versus pre-exploration sleep sessions (G). 
(H) Mean DS1 reactivation pooled across mice (lef t panel) and in individual mice (right four panels; 
measured by the β coef f icients of the linear regression that predicted post-exploration DS1 coactivity f rom 
waking theta coactivity, controlling for pre-exploration DS1 coactivity) 
(I) As H but for DS2 reactivation. 
For F and G, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
paired permutation tests, event versus event (F), pre versus post (G), *P < 0.05, **P < 0.01, ***P < 0.001. 
  



   

 

 

 

 
 
Figure S6. Closed-loop optogenetic suppression of dentate granule cells during DSs, related to 
Figures 5 and 6.  
(A-C) During DS-triggered DG light-delivery for the optogenetic silencing of  DG cells, there was no 
dif ference in the amplitude (A, B) or duration (C) of  DSs in light-on versus light-of f  (control) DS events. 
(D-I) DG light-delivery did not af fect CA1 LFPs (D), ripple duration (E), intra-ripple f requency (F), ripple 
power (G), nor the probability of  ripple occurrence (H-I; 22 recording sessions in 8 mice). 
(J) DS-triggered DG light-delivery signif icantly reduced f iring rates in DG, CA3 and CA1 principal cells 
relative to DSs with no light delivery (Control), in a paired analysis (same cells under both conditions). 
Each panel shows mean ± SEM f iring rate. Average f iring rates across the entire recording session 
(including sleep and exploration epochs) were: DG: 1.4±0.1 Hz, CA3: 1.7±0.3 Hz, CA1: 1.5±0.1 Hz. 
(K) Estimation plot showing the maximum f iring rate (during DS events) in DG, CA3 and CA1 principal 
cells during DS-Sync or Control (DSs with no light delivery), as in panel J. Upper: raw data points (each 



   

 

 

point shows maximum f iring rate), with the gapped lines on the right as mean (gap) ± s.d.  (vertical ends) 
for each event type. Lower: dif ference (Δ) in maximum f iring rates between DS-Sync and no-light control 
condition (paired permutation test in DG: n=216 cells, CA3: n=50 cells, and CA1: n=133 cells f rom n=22 
recording sessions in 8 mice). 
(L) Estimation plot for object preference in a ‘no -laser’ control group of  mice, showing signif icantly more 
time spent investigating the novel object (n=20 test sessions in 5 mice).  
(M-O) In the continuous novel object recognition task, the total time spent exploring the objects (M), the 
number of  laser pulses delivered (N) and the number of  SWRs detected during sleep sessions (O) did not 
dif fer between the DS-delay and DS-sync conditions. 
(P-S) The tone fear task in which mice had 5 tone-shock pairings during conditioning followed by either 
DS-Delayed or DS-Sync stimulation, and then fear memory recall. Mice f roze more during recall than the 
baseline (Q), but this did not dif fer between the DS-Delay and DS-Sync groups (R; n=8 sessions in 4 
mice). Mice received an equivalent number of  laser pulses in the two groups (S). 
(T) In the novel position recognition task, mice in the DS-Delayed and DS-Sync groups received 
equivalent numbers of  laser pulses. 
E-G, M-O, S,T show mean ± SEM. For B,C,I,K,L,Q,R, the test statistic is the mean dif ference, shown on 
the y-axis of  each lower plot (black dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -
error distribution). P-values are f rom paired permutation tests, Control (no laser) versus DS-Sync 
(B,C,I,K,R), Novel versus Familiar (L), Baseline versus DS-Delay and DS-Sync (Q), *P < 0.05, **P < 0.01, 
***P < 0.001.  



   

 

 

 

 

 

Table S1. Ratio of DG to CA neurons influence on the dimensionality and 

similarity of population firing vectors, related to Figure 3. 

Event Dependent variable Independent variables 
Degrees 

of 

freedom 

r-value p-value 

DS Dimensionality Ratio of  DG:CA neurons 33 0.24 0.18 

DS1 Dimensionality Ratio of  DG:CA neurons 33 0.12 0.51 

DS2 Dimensionality Ratio of  DG:CA neurons 33 0.26 0.14 

SWR Dimensionality Ratio of  DG:CA neurons 33 0.32 0.07 

DS Similarity Ratio of  DG:CA neurons 33 -0.06 0.75 

DS1 Similarity Ratio of  DG:CA neurons 33 -0.13 0.46 

DS2 Similarity Ratio of  DG:CA neurons 33 -0.08 0.66 

SWR Similarity Ratio of  DG:CA neurons 33 -0.39 0.02 

 

 

 

  



   

 

 

 

 

 

Table S2. Linear mixed model analysis for SWR and DS reactivation of waking 

theta coactivity patterns, related to Figure 4. 

Event 
Dependent 

variable 
Independent variables 

No. 
Observation 

SWR Post-exploration 
Theta coactivity 

Pre-exploration 
7310 

SWR Pre-exploration 
Theta coactivity 
Post-exploration 

7310 

DS Post-exploration 
Theta coactivity 
Pre-exploration 

7310 

DS Pre-exploration 
Theta coactivity 
Post-exploration 

7310 

 

Event 
Dependent 

variable 
Independent 

variables 
β 

coefficient 
CI (95%) z Prob. 

SWR Post-exploration Theta coactivity 0.37 [0.32, 0.43] 13.1 P < 0.0001 

  Pre-exploration 0.11 [0.09, 0.13] 9.5 P < 0.0001 

SWR Pre-exploration Theta coactivity 0.20 [0.15, 0.26] 7.0 P < 0.0001 

  Post-exploration 0.11 [0.04, 0.08] 9.5 P < 0.0001 

DS Post-exploration Theta coactivity 0.39 [0.31, 0.46] 9.7 P < 0.0001 

  Pre-exploration 0.25 [0.23, 0.27] 23.3 P < 0.0001 

DS Pre-exploration Theta coactivity 0.24 [0.16, 0.32] 5.8 P < 0.0001 

  Post-exploration 0.27 [0.25, 0.30] 23.3 P < 0.0001 

  



   

 

 

 

 

 

Table S3. Counts of principal cells by session and mouse, related to Figures 1-6. 

 

Figure number / 

panel 

# 

sessions 

# 

mice 

# principal cells (mean ± SEM per mouse) 

   DG CA3 CA1 

Figure. 1F,G 73 12 921 

(76.5±22.2 per mouse) 

388 

(32.3±9.6 per mouse) 

887 

(73.6±17.9 per mouse) 

Figure. 2A-C 8 3 n/a n/a n/a 

Figure. 2E-G 73 12 921 

(76.5±22.2 per mouse) 

388  

(32.3±9.6 per mouse) 

887 

(73.6±17.9 per mouse) 

Figure. 3B-D,F-

G,K,L 

34 8 647 

(85.6±28.9 per mouse)  

169 

(25.6±9.1 per mouse) 

449 

(77.9±23.0 per mouse) 

Figure. 4B-C 9 4 114 

(28.5±7.2 per mouse) 

5 

(1.25±1.1 per mouse) 

232 

(58.0±18.0 per mouse) 

Figure. 5F-G 43 9 548 

(60.9±11.8 per mouse) 

n/a n/a 

Figure. 5I-J 13 3 181 

(60.3±14.0 per mouse) 

n/a n/a 

Figure. 6H (DS) 

Figure. 6H (SWR) 

10 

12 

3 

3 

79 (26.3±10.3 per mouse) 

173 (57.7±15.7 per 

mouse) 

22 (7.3±3.8 per mouse) 

32 (10.7±6.4 per 

mouse) 

73 (24.3±4.0 per mouse) 

68 (22.7±8.1 per mouse) 
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SUMMARY
Stabilizing new memories requires coordinated neuronal spiking activity during sleep. Hippocampal sharp-
wave ripples (SWRs) in the cornu ammonis (CA) region and dentate spikes (DSs) in the dentate gyrus (DG) are
prime candidate network events for supporting this offline process. SWRs have been studied extensively, but
the contribution of DSs remains unclear. By combining triple-ensemble (DG-CA3-CA1) recordings and
closed-loop optogenetics inmice, we show that, like SWRs, DSs synchronize spiking across DG andCA prin-
cipal cells to reactivate population-level patterns of neuronal coactivity expressed during prior waking expe-
rience. Notably, the population coactivity structure in DSs is more diverse and higher dimensional than that
seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during DSs impairs subse-
quent flexible memory performance during multi-object recognition tasks and associated hippocampal pat-
terns of neuronal coactivity. We conclude that DSs constitute a second offline network event central to hip-
pocampal population dynamics serving memory-guided behavior.
INTRODUCTION

Memories are stabilized during periods of sleep and rest.1–4

Decades of work have provided important insights into the

underlying brain network mechanisms and have identified off-

line hippocampal activity as essential for this process.5,6 Cen-

tral to our current understanding are hippocampal sharp-wave

ripples (SWRs) that feature an intermittent, high-frequency

(100–250 Hz) network event detected in the local field poten-

tials (LFPs) of the cornu ammonis (CA)1 region.7–10 During

SWRs, the firing activity of CA1 principal cells is transiently

modulated11,12 and reactivates the population-level firing pat-

terns expressed in previous waking experience.13 These off-

line spiking correlates have behavioral significance: suppress-

ing CA1 neurons during SWRs impairs memory recall for

recently acquired information.14–16 Conversely, prolonging

SWRs or reinforcing the coordination between SWRs and

neocortical activity promotes memory consolidation and sub-

sequent behavioral performance.17,18 Hippocampal SWRs

therefore constitute an offline network event important for

memory-guided behavior. However, during sleep/rest periods,

the hippocampus exhibits another prominent network event:

dentate spikes (DSs), which are seen in the LFPs of the den-

tate gyrus (DG). To date, DSs have received little attention

compared with SWRs. Accordingly, here we characterize the

neuronal spiking dynamics nested in DSs with respect to

SWRs and evaluate whether DSs constitute a second network
Neuron 112, 1–14, Novem
This is an open access article under the
event central to offline reactivation of waking firing patterns

and subsequent memory-guided behavior.

The DG gates sensory information to the hippocampus,

notably decorrelating these inputs into dissimilar neural pat-

terns.19–21 This function may be crucial for the hippocampus to

integrate multiple items in memory and to flexibly distinguish be-

tween stimuli with overlapping features. Within the DG, DSs

represent intermittent, large-amplitude network events recorded

in the LFPs of the DG granule cell layer and are associated with

increased spiking activity in dentate cells.22–24 However, across

the literature, both increased and suppressed spiking activity of

CA principal cells have been reported,22,24–28 although, notably,

some of these studies were in anesthetized25,27 or head-fixed

animals.24,28 Thus, here we further performed a systematic

comparative assessment of DG and CA principal cell spiking ac-

tivity during DSs versus SWRs in non-anesthetized, freely

behaving mice.

To investigate the influence of DSs on hippocampal population

activity and memory, we combined triple-site (DG-CA3-CA1)

extracellular multichannel recordings and closed-loop optoge-

netic interventions in mice during active exploratory behavior

and offline sleep/rest. We observed that during offline DSs, prin-

cipal cell spiking transiently increased across the DG and CA re-

gions of the hippocampus, nesting offline population-level activity

patterns that are distinct from those in SWRs. Further, we report

that the cell-to-cell coactivity seen during prior waking experience

is reactivated during DSs (as well as SWRs). DS-nested neuronal
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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activity is relevant to whole-hippocampus population dynamics

and memory-guided behavior: closed-loop suppression of

DG granule cell spiking selectively during offline DSs, but not

SWRs, impairs subsequent flexible memory performance in hip-

pocampal-dependent, multi-object recognition tasks. We pro-

pose that DSs constitute a second hippocampus network event

that plays a complementary role to that of SWRs by supporting

the offline reactivation of diverse population patterns of neuronal

coactivity in support of memory-guided behavior.

RESULTS

Firing activity of hippocampal neurons synchronizes
during DS events
We first used triple-site (DG-CA3-CA1) tetrode recordings to

monitor network events in the LFPs and the spike trains of

neuronal ensembles from the dorsal hippocampus of mice dur-

ing sleep/rest (Figures 1A, 1B, and S1A–S1C; n = 12 mice).

From these LFPs, we detected DSs in DG and SWRs in CA1 to

compare the spiking activity of principal cells between these

two types of network events. Across mice and recording ses-

sions, DS waveforms were highly consistent (Figures S1D and

S1E). Both DG DSs and CA1 SWRs were of short duration (Fig-

ure S1F; median [interquartile range, IQR] duration: DSs = 42.4

[40.0–46.4] ms; SWRs = 47.5 [45.2–51.0] ms) and occurred inter-

mittently (median [IQR] occurrence frequency: DSs = 0.40 [0.25–

0.58] Hz; SWRs = 0.75 [0.26–1.26] Hz) during behavioral and

LFP profiles indicative of sleep/rest (Figures S1G and S1H).

These two network events rarely occurred simultaneously,

consistent with previous reports,22,29 with the vast majority of

DSs not expressed within ±50 ms of a SWR (median [IQR]:

92.5% [87.9%–95.6%]; DS-SWR co-occurrence frequency:

0.03 [0.02–0.05] Hz; Figures S1I and S1J). We computed the

firing responses of individual principal cells (n = 2,196 total re-

corded principal cells; CA1, 887; CA3, 388; DG, 921 cells;

Figures S2A–S2F) with respect to the peak of either DSs or

SWRs, excluding those temporal windows where both events

co-occurred within ±50 ms. With the term ‘‘principal cells,’’ we

refer to CA pyramidal cells and DG granule cells that constitute

the dominant (hence ‘‘principal’’) cell type in the hippocampus,

exhibiting lower mean firing rates compared with local fast-

spiking inhibitory cells (Figure S2E). In line with previous

work, DG principal cells transiently increased their firing activity

during DSs,22,25 and the activity of CA principal cells increased

during SWRs (Figures 1C–1G and S2G–S2P).8,30 We further

observed that DG principal cell firing increased during SWRs

(Figures 1C, 1F, 1G, and S2G–S2P) and that CA principal cells

also increased their firing rate during DSs (Figures 1D–1G and

S2G–S2P), which contrasted with some earlier reports that CA

principal cell firing is suppressed during DSs.22,25

To quantify the magnitude of neuronal activation during DSs

and SWRs, we calculated the proportion of DG, CA3, and CA1

principal cells that increased their firing rate beyond a given sig-

nificance threshold, using the Z scored peri-event time histo-

grams obtained for each of these two network events (Figure 1G).

During DSs, the majority of DG (91%), CA3 (56%), and CA1

(61%) principal cells increased their firing rate more than three

standard deviations above baseline (Z score > 3, p < 0.003;
2 Neuron 112, 1–14, November 20, 2024
Figures S2G–S2I). During SWRs, a comparable proportion of

principal cells significantly increased their firing activity beyond

this threshold (Figures S2G–S2I). Hippocampal CA principal cells

exhibited preferential activation during SWRs, whereas DG prin-

cipal cells exhibited preferential activation during DSs (Fig-

ure S2I). DG principal cell population typically fired before CA

principal cell populations during DSs (Figures S2J–S2N). While

DG andCA principal cells exhibited such a temporal relationship,

both DSs and SWRswere associated with an overall transient in-

crease in hippocampal spiking activity (Figures S2O and S2P).

Previous studies identified two types of DS event (DS1

and DS2) based on the laminar profile of the transmembrane

currents associated with the LFP expression of these network

events.22,24,26 Therefore, we next asked whether principal cell

firing responses differed between DS1 and DS2. However, local-

izing sinks and sources of currents across hippocampal layers

requires applying current source density (CSD) analysis31 to

the LFPs measured at evenly spaced sites from the CA1 oriens

layer to the DG granule cell layer. Such a laminar profile is

not accessible with tetrode recordings. To distinguish between

DS1 and DS2 events, we therefore implanted linear silicon-

probes spanning the somato-dendritic axis of CA1 principal cells

and reaching the inferior blade of the DG in a separate group of

mice (n = 3). Having performed silicon-probe recordings during

sleep/rest, we applied CSD analysis to these LFPs measured

over the radial extent of the hippocampus to identify DS1 versus

DS2 according to their underlying profile of current sinks and

sources (Figures 2A and S3A). These CSD-validated DS1 and

DS2 events exhibited distinct DG granule cell layer LFP wave-

forms (Figures 2B and S3B).We then trained a linear discriminant

analysis classifier to identify these CSD-validated DS1 versus

DS2 events using only their DG granule cell layer LFP signal.

When tested on the silicon-probe LFP dataset, the classifier

achieved over 85% accuracy (Figure 2C). When next applied

to the tetrode LFP dataset, the classifier-identified DS1 and

DS2 events also exhibited distinct granule cell layer LFP wave-

forms (Figures 2D, S3C, and S3D), which were consistent with

those obtained in silicon-probe recordings (Figures 2B and

S3B). In both (tetrode and silicon-probe) datasets, DS2 repre-

sented two-thirds of the DS events (median [IQR]: 66% [61%–

73%]), thus constituting the dominant type. Leveraging this

cross-dataset approach, we found that the firing response of

DG and CA principal cells was stronger for DS2 than DS1

(Figures 2E–2G and S3E–S3J). A greater proportion of CA prin-

cipal cells showed firing activity below baseline during DS1

compared with DS2 (35% versus 11%; Figures 2F, S3K, and

S3L), providing insights into the previously documented DS-sup-

pressed firing in some CA principal cells.22,25,32 Nevertheless,

the average activity of principal cells in DS1 (and DS2) was signif-

icantly higher than their baseline firing (calculated outside of any

DS and SWR events) during sleep/rest (Figures 2G, S3G, and

S3H) and their overall mean firing rate calculated over the whole

recording day (Figures S3I and S3J). These results show that DS

events (both DS1 and DS2) constitute transient network states

that are qualitatively distinct from the sleep/rest epochs outside

these events in terms of their capacity to increase spiking activity

of individual principal cells distributed across hippocampal

regions.
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Figure 1. Dentate spikes recruit principal cell spiking across DG, CA3, and CA1
(A) Triple-ensemble (DG-CA3-CA1) tetrode recording allowed simultaneous monitoring of local field potentials (LFPs) and spiking activities.

(B) Upper: raw wide-band CA1 and DG LFP traces (black) showing sharp-wave ripples (SWRs, hash symbols) in CA1 and dentate spikes (DSs, asterisks) in DG.

Scale bars, 100ms (horizontal), 1.5 mV for DG, and 0.5mV for CA1 (vertical). Lower: (color-coded) raster plot of spike trains fromCA1 (orange), CA3 (red), and DG

(blue) principal cells (PCs, one cell per row). Shown is a few second sample of recording for clarity.

(C–E) Spiking responses from single example DG (C), CA3 (D), and CA1 (E) principal cells. Upper: Z scored peri-event time histogram (PETH) during DSs (left) and

SWRs (right). Lower: corresponding raster plot showing event-related spiking responses (one event per row).

(F) Group averaged firing rate PETHs for hippocampal PCs during DSs (top) and SWRs (bottom): DG (n = 921), CA3 (n = 388), and CA1 (n = 887) cells from 12mice.

Blue traces: mean ± SEM.

(G) Heatmaps showing Z scored firing rates for the DG, CA3, and CA1 PCs shown in (F). For each heatmap: one cell per row, sorted (top-to-bottom) from themost

activated (highest Z score at event peak, 0 ms, red) to the least activated (lowest Z score at event peak, blue) during DSs.
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Figure 2. Hippocampal principal cell firing is higher

in DS2 than DS1

(A) Left: laminar (64-channel) silicon-probe recording al-

lowed simultaneous monitoring of LFPs across hippo-

campal layers for current source density (CSD) analysis.

Right: example (radially organized) mean LFP traces (gray)

with superimposed CSD profile (heatmaps) for type 1 (DS1)

and type 2 (DS2) dentate spikes and SWRs (calculated from

2,231 DS events and 8,693 SWR events in one mouse).

Note the distinct CSD profiles reflecting the different

transmembrane currents associated with DS1 versus DS2

versus SWR events. Hippocampal layers: oriens (ori); pyr-

amidale (pyr); radiatum (rad); lacunosum-moleculare (lm);

outer (om), middle (mm), and inner (im) moleculare; gran-

ulare (gcl); and hippocampal fissure (hf).

(B) Upper: shown for silicon-probe recorded DS1 and DS2

identified from their CSD profiles are example average

granule cell layer LFP waveforms triggered by the peak of

these events. Lower: in these recordings there was a higher

proportion of DS2 than DS1 events (n = 15,067 events,

3 mice).

(C) Upper: we applied principal component analysis on the

normalized granule cell layer LFP waveforms for all silicon-

probe recorded DS events. We then used the principal

components explaining 90% of the variance to train a linear

discriminant classifier with the true labels (DS1 versus DS2)

determined by the individual CSD profiles. Lower: the

classifier performance (>85%) was significantly above

chance level (50%) when tested on silicon-probe recorded

LFP waveforms of unlabeled events. We used this classifier

to next distinguish DS1 and DS2 from tetrode-recorded

granule cell layer LFP waveforms (D).

(D) Upper: shown for tetrode-recorded DS events are the

average granule cell layer LFP waveforms for DS1 and DS2

predicted label obtained from the silicon-probe-based

classifier (C). Lower: these recordings also contained a

higher proportion of DS2 than DS1 events (n = 32,215

events, 12 mice).

(E) Group averaged firing rate PETHs for tetrode-recorded

DG, CA3, and CA1 principal cells during DS1 and DS2 (as

Figures 1F and 1G). Blue traces: mean ± SEM.

(F) Heatmaps showing Z scored firing rates for the DG, CA3,

and CA1 cells shown in (E). For each heatmap: one cell per

row, sorted (top-to-bottom) from the most activated

(highest Z score) to least activated (lowest Z score) during

DS1 peaks.

(G) Estimation plot showing the effect size for the differ-

ences in firing rate of DG, CA3, and CA1 principal cells

during all DS events, DS1 and DS2 events analyzed sepa-

rately, and SWRs compared with equivalent (50 ms dura-

tion matched) baseline windows (base) in which no DSs or

SWRs occurred. Upper: raw data points (each point rep-

resents one cell), with the gapped lines on the right as mean

(gap) ± SD (vertical ends) for each event. Lower: difference

(D) in firing rate between baseline windows and all DS, DS1,

DS2, and SWR events computed from 5,000 bootstrapped

resamples and with the difference-axis origin (dashed line)

aligned to the baseline rate (black dot, mean; black ticks,

95% confidence interval; filled curve, sampling-error dis-

tribution). The test statistic is the mean difference, shown

on the y axis of the lower plot. p values are from paired

permutation tests, event versus baseline, ***p < 0.001.

(E and G) show data from n = 2,196 hippocampal principal

cells (DG: n = 921, CA3: n = 388, and CA1: n = 887) from

12 mice.
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DS events nest higher-dimensional patterns of
population coactivity
We next investigated how the hippocampus organizes the col-

lective activity of its principal cells both within individual DS

events and across events, comparing these population-level

patterns to those expressed in SWRs. To proceed, we first

considered the neuron-wise vectors formed by the instanta-

neous spike discharge of principal cells in DSs, SWRs, or dura-

tion-matched control windows (without any DSs or SWRs) of the

same sleep/rest (Figures 3A and S4A; ‘‘population vector anal-

ysis’’). This was conducted for all sleep/rest epochs (both those

recorded before and those after active exploratory behavior).

Using the Gini index,33,34 we noted a marked decrease of the

mean population sparsity in the spiking vectors nested in DSs

and SWRs compared with baseline periods of duration-matched

control windows (Figure 3B), with equivalent population sparsity

levels during DS2 versus SWRs (Figures 3C, S4B, and S4C). A lo-

gistic regression classifier trained on a subset of these popula-

tion firing vectors and iteratively tested on the remaining subset

significantly distinguished between DS and SWR events but

could not distinguish between their corresponding pre-event

nor their post-event control epochs (Figure 3D). Successful clas-

sification was also obtained when using only DS2 events, which

matched SWRs in the mean population sparsity per event (Fig-

ure S4D). When evaluating the pairwise similarity of DS-nested

population vectors versus those of SWR-nested vectors (Fig-

ure 3E), we further observed that DSs contained a higher diver-

sity (i.e., lower similarity) of firing vectors compared with those
Figure 3. The coactivity structure of population spiking differs betwee

(A) Analytical framework: the population-level coactivity structure was analyzed u

SWRs, DSs, or duration matched (50 ms) baseline control windows. Scale bars sh

these population firing vectors were then binarized (for each cell: a non-zero spike

peer coactivity, controlling for the overall population activity.

(B and C) Estimation plots showing the effect size for the differences in population

or separately), SWRs, and compared with equivalent (50 ms duration matched) ba

points (each point represents one session with at least 100 of each event type a

(vertical ends) for each event. Lower: difference (D) in sparsity between baseline

strapped resamples and with the difference-axis origin (dashed line) aligned to the

curve, sampling-error distribution). (C) as (B) but comparing population sparsity du

indicating they engage similar levels of neuronal activity.

(D) A logistic regression classifier trained on population vectors nested in SWR ver

using a 4-fold cross-validation approach (75% of vectors for training; the remainin

discriminate between pre-DS versus pre-SWR and post-DS versus post-SWR ve

(E–G) DS population firing vectors are more diverse than those in SWRs. For each

each pair of population vectors nested in either DSs, SWRs, or duration-matched b

vector similarity for one session. Cross-population vector similarity was significan

compared with DS1 and DS2 separately (G).

(H–K) DS and SWRpopulation firing vectors exhibit distinct topology of neuronal coa

that quantified their short timescale (50 mswindows centered on DS or SWR peaks

remaining principal cells in the population (A). (H) This procedure returned for both D

the neuron pairwise coactivity structure of the population (example matrix from on

SWR-based neuronal coactivity graphs. For clarity, (J) shows anexample subset (lef

neuronal coactivity and average clustering coefficient (right). (K) Note that DS-base

graphs and control graphs constructed from duration-matched baseline windows

upper plot of (K) represents the mean clustering coefficient for one hippocampal p

(L) The dimensionality of population vector matrices (number of principal compon

For (B)–(D), (F), (G), and (L), each data point shows one recording session (n = 34 re

on the y axis of each lower plot (black dot, mean; black ticks, 95% confidence in

mutation tests, event versus baseline (B, F, and K); event versus event (C, F, K

**p < 0.01, ***p < 0.001.
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in SWRs, which in turn were more similar to one another

(Figures 3F, 3G, and S4E–S4H).

This difference in population vector similarity suggested that

DSs andSWRs differ with respect to their neuronalmotifs of tran-

sient coactivation. By examining the topological organization of

peer-to-peer firing associations, we indeed observed that DS

events contain stronger motifs of coactive principal cells than

SWRs. For each cell pair ði; jÞ, we trained a generalized linear

model to predict the spike discharge of neuron j from that of

neuron i while accounting for the activity of the remaining peers

(Figure 3A; ‘‘peer-to-peer coactivity analysis’’). We performed

this procedure separately for DS and SWR events, which re-

turned for each type of network event a matrix of b regression

weights that represented the coactivity structure of the popula-

tion (Figure 3H). With these matrices, for both DS and SWR

events, we constructed neuronal coactivity graphs (with no

self-connections), where each node is a cell and the edge linking

any two nodes represents the firing association of that cell

pair (Figures 3I and 3J). This revealed that DS-based graphs con-

tained stronger triads of coactive nodes compared with

SWR graphs (Figures 3K, S4I, and S4J). This remained the

case when directly comparing DS2 and SWR events (Figure S4K)

and when calculating the neuron-wise average coactivity

strength (Figure S4L).

These findings showed that while both DS and SWR events

synchronize hippocampal principal cells, population coactivity

responses to DSs are more diverse. To further assess this, we

applied principal component analysis to quantify and compare
n DSs and SWRs

sing population vectors of principal cell spiking transiently nested in individual

ow 20 ms and 0.5 mV for SWRs and 1 mV for DSs. For the analyses in (B)–(G),

count gives 1; or else 0). For the analyses in (H)–(K), we calculated the peer-to-

sparsity (using the Gini index) during DSs (with DS1 and DS2 plotted altogether

seline windows (baseline) in which no DSs or SWRs occurred. Upper: raw data

nd 20 principal cells), with the gapped lines on the right as mean (gap) ± SD

windows and all DS, DS1, DS2, and SWR events computed from 5,000 boot-

baseline sparsity (black dot, mean; black ticks, 95% confidence interval; filled

ring SWR versus DS2. Note that DS2 and SWR events have equivalent sparsity,

sus DS events or matched duration pre-event and post-event control windows,

g 25% for evaluation), significantly discriminated DSs from SWRs but could not

ctors. Gray horizontal bars: mean classification accuracy.

sleep session, we computed the similarity (Pearson correlation coefficient) for

aseline windows (baseline). (E) shows example DS and SWRmatrices of cross-

tly higher in SWRs compared with both DSs and control windows (F), and when

ctivity. The coactivity between any two ði; jÞ neuronswasmeasured using aGLM

) firing relationship while accounting for network-level modulation reported by the

S and SWR events an adjacency matrix of b regression weights that represented

e session). (I) Visualization of the corresponding matrices representing DS- and

t) for each adjacencymatrices shown in (H), alongwith its correspondingmotifs of

d graphs contained stronger triads of coactive nodes compared with both SWR

(baseline), as indicated by higher mean clustering coefficients. Each point in the

rincipal cell (n = 1,265 neurons, 8 mice).

ents required to explain 90% of the variance) was higher for DSs than SWRs.

cording sessions from 8mice). The test statistic is the mean difference, shown

terval; filled curve, sampling-error distribution). p values are from paired per-

, and L); or event versus pre-event, event versus post-event (D). *p < 0.05,
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Figure 4. Waking patterns of hippocampal coactivity reactivate in offline DSs

(A) DS and SWR reactivation of waking patterns formed by principal cell theta coactivity. For each cell pair ði;jÞ, we predicted the spike discharge of neuron j from

the activity of neuron i while regressing out the activity of the remaining population during pre-exploration sleep, exploration of open-field arenas, and post-

exploration sleep (using GLMs as in Figure 3A). We separately applied this procedure for DSs and SWRs in both sleep/rest sessions (offline DS versus offline SWR

coactivity) and across theta cycles in the exploration session (waking theta coactivity). This procedure returned amatrix of b regression weights that represented

the neurons pairwise coactivity structure of the population in each session. We then used a linear mixedmodel (LMM) to compare the waking theta coactivity with

post-exploration sleep coactivity (in DSs or SWRs) while controlling for pre-exploration sleep coactivity (in DSs or SWRs), and vice versa (reverse model). We

included mouse identity as a random factor in each LMM.

(B) SWR reactivation (measured by the b coefficients of the LMM that predicted post-exploration SWR coactivity fromwaking theta coactivity, controlling for pre-

exploration SWR coactivity). Left: the b coefficient for theta coactivity was significantly higher when predicting post-exploration SWR coactivity than with the

reverse model (i.e., predicting pre-exploration SWR coactivity from theta coactivity, controlling for post-exploration SWR coactivity). Gray points show the b

coefficient for theta coactivity for individual mice. Error bars show ± 95% confidence interval. p value from t-test comparing post versus pre b coefficients:

t(7,308) = 10.29; p < 0.0001. Right: the histogram shows the random probability distribution of b weights for theta coactivity when cell pair identity was shuffled

(i.e., a null distribution based on 1,000 random shuffles; n = 7,310 cell pairs from 4 mice). The colored arrow shows the actual b coefficient for theta coactivity.

(C) DS reactivation exhibited the same pattern of results as SWR reactivation, shown in B. p value from t-test comparing post versus pre b coefficients t(7,308) =

8.84; p < 0.0001.
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the variance explained by the activity patterns nested in DS1,

DS2, and SWR. This revealed higher dimensionality of population

vectors in DS events compared with SWRs (Figure 3L; Table S1).

This was accounted for by DS2 firing vectors, with those nested

in DS1 requiring fewer principal components to explain equiva-

lent variance and exhibiting lower dimensionality than those in

DS2 and SWRs (Figures S4M–S4P).

Waking theta coactivity patterns reactivate in offline
DSs and support flexible memory
The DS-nested motifs of peer-to-peer firing associations

could instantiate population patterns of neuronal coactivity

undergoing offline reactivation to support memory-guided

behavior. Notably, the link between hippocampal SWRs and

memory reactivation was initially established through the obser-

vation that the neural patterns of joint spiking activity expressed

during exploratory behavior are more strongly correlated with

those nested in post-exploration sleep/rest SWRs than those

in SWRs before waking experience.8,13 Accordingly, we next
determined whether DSs constitute another hippocampal time

frame for offline reactivation of waking coactivity patterns. To

proceed, we used our peer-to-peer coactivity analysis (Fig-

ure 3A), applying it to DS versus SWR events of sleep/rest

before and after exploration of open-field arenas (Figures 4A

and S5). Likewise, we obtained the waking patterns of popula-

tion coactivity in theta cycles during exploration. With these,

we computed DS and SWR reactivation by measuring the ten-

dency of the peer-to-peer theta firing associations to reoccur

in post-exploration sleep/rest DS (or SWR) events while control-

ling for prior pre-exploration DS (or SWR) coactivity and mouse

identity using a linear mixed model. In line with previous work,

offline patterns of SWR coactivity reflected those of theta coac-

tivity significantly more during post-exploration than pre-explo-

ration sleep/rest (Figures 4B, left, S5B, and S5D). This SWR re-

activation was significantly higher than that obtained with a null

distribution generated from models using randomly shuffled

cell pair identities (Figure 4B, right). Importantly, we observed

that theta coactivity patterns were also strongly reactivated in
Neuron 112, 1–14, November 20, 2024 7
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Figure 5. DS- and SWR-informed offline suppressions of DG granule cell activity

(A) Triple-ensemble (DG-CA3-CA1) recording with LFP-informed yellow (561 nm) DG light delivery. Dentate granule cells (DGCs) transduced with ArchT-GFP

(DGGrm2::ArchT). Closed-loop light delivery to suppress DGC spiking immediately upon either DS detection (DS-sync condition) or SWR detection (SWR-

sync) or their respective control conditions (DS-delay and SWR-delay, where light delivery was offset by 100 ms after event detection).

(B) ArchT-GFP-expressing DGCs in a DGGrm2::ArchT mouse. Neuronal nuclei stained with NeuN. Scale bar, 100 mm. Granule cell layer, gcl; molecular layer, mol;

pyramidal cell layer, pyr; stratum oriens, ori; radiatum, rad; and lucidum, s.l.

(C and D) Closed-loop feedback transiently silenced DGCs during either DG DS (C; ‘‘DS-sync’’) or CA1 SWR (D; ‘‘SWR-sync’’) events, illustrated with raw data

examples. Scale bars, 30 ms (horizontal) and 1.5 mV (vertical).

(E) Raster plots (event-related spiking response; one light pulse per row (upper), and peri-event time histograms (lower) showing photo-silencing of two example

DG cells from a DGGrm2::ArchT mouse in DS-delay and DS-sync.

(F and G) Corresponding quantification of average DGC firing rate (Z score) for DS-delay versus DS-sync (F and G; n = 548 cells in 9 mice). In (F), the orange box

shows the laser-on period for DS-sync.

(H–J) As (E)–(G) but showing DGC photo-silencing during SWR-delay and SWR-dync conditions (I and J; n = 181 cells in 3 mice). In (I), the orange box shows the

laser-on period for SWR-sync.

For (F) and (I), the traces showmean ± SEM. For (G) and (J), the test statistic is the mean difference, shown on the y axis of each lower plot (black dot, mean; black

ticks, 95% confidence interval; filled curve, sampling-error distribution). p values are from unpaired permutation tests, delay versus sync, ***p < 0.001.
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post-exploration DSs (Figures 4C, S5C, and S5E; Table S2). The

clustering coefficient was higher in DSs than SWRs and also

increased from pre- to post-exploration sleep in both SWRs

and DSs (Figures S5F and S5G). Analyses of DS1 and DS2 sepa-

rately showed evidence for reactivation during both types of

post-exploration DS events (Figures S5H and S5I). By applying

the same analytical framework to the neuronal ensembles

tracked in SWRs and DSs, this result provided evidence for off-

line DS reactivation of hippocampal waking firing patterns.

The offline reactivation of waking population patterns in sleep/

rest DSs (Figure 4C), which contain more diverse and higher-

dimensional patterns of neuronal coactivation than those found
8 Neuron 112, 1–14, November 20, 2024
in SWRs (Figures 3F and 3L), raised the question of their network

contribution to memory-guided behavior. We thus tested

whether the offline population response during DSs was neces-

sary to perform tasks that require integrating multiple items in

memory to flexibly distinguish between familiar and novel stimuli.

To this end, we transduced DG granule cells with the yellow

(561 nm) light-driven optogenetic silencer Archaerhodopsin T

(ArchT) in Grm2-Cre mice (Figures 5A and 5B). We then im-

planted these DGGrm2::ArchT mice for triple-ensemble (DG-

CA3-CA1) recordings combined with bilateral optic fibers for

DG light delivery. In these experiments, DG light delivery was

performed in a closed-loop manner during sleep/rest using the
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real-time detection of either DSs (in the DG LFPs) or SWRs (in the

CA1 LFPs; Figures 5A, 5C, and 5D; ‘‘DS-sync’’ or ‘‘SWR-sync’’

conditions). We also used a within-subject control paradigm

whereby, on different days, light was not synchronized to but

instead delivered after each DS or SWR had elapsed (‘‘DS-

delay’’ or ‘‘SWR-delay’’ conditions). DS-synchronized light deliv-

ery did not affect the amplitude of the DG or CA1 LFPs, nor CA1

ripple duration, occurrence probability, or power (Figures S6A–

S6I). DS-synchronized light delivery significantly reduced spiking

activity in DG neurons compared with when laser-onset was DS

delayed (Figures 5E–5G) and also reduced spiking activity in CA

principal cells (Figures S6J and S6K). Paired analysis of the firing

rates of dentate granule cells during DS events without light de-

livery versus those with light deliver (DS-sync) also showed

significantly reduced instantaneous spiking (15.0 ± 0.7 versus

10.4 ± 0.6 Hz). SWR-synchronized light delivery also significantly

suppressed DG neuronal spiking (Figures 5H–5J).

We applied these closed-loop light-delivery approaches dur-

ing interposed sleep/rest sessions in three behavioral tasks (Fig-

ures 6 and S6L–S6T). The first, hippocampal-dependent task

required mice to recognize previously encountered (familiar)

versus novel objects.35 In this novel-object recognition task,

mice repeatedly explored a square-walled arena containing

four objects (Figures 6A and 6B). In the first session (‘‘sampling’’),

mice encountered four distinct novel objects, each one placed

beside a wall. On the subsequent sessions (‘‘test’’), one of the

initially sampled objects was replaced by a different novel object

so that the mouse could explore one completely novel object

along with the three ‘‘familiar’’ objects from the previous session

that day. These exploration (sampling and test) sessions alter-

nated with sleep/rest sessions where mice received DG-tar-

geted light delivery, either synchronized or delayed with respect

to either DS or SWR onset, thus yielding four distinct experi-

mental conditions (DS-delay, DS-sync, SWR-delay, and SWR-

sync). In each test session n, we measured novelty preference

using the proportion of time mice spent investigating the novel

versus the familiar objects, thereby probing recognition memory

for session n � 1. We found that novelty detection was not

impaired in test sessions following sleep with DG granule cell

suppression in either DS-delayed, SWR-delayed, or SWR-syn-

chronized conditions: mice subsequently expressed a stronger

preference for novel over familiar objects under these three con-

ditions (Figures 6C and 6D). This novel-object preference

was similar to that observed in control mice without any optoge-

netic intervention (Figure S6L). However, novel-object prefer-

ence was absent in test sessions following DS-synchronized

suppression (Figures 6C and 6D). The total object exploration

time, number of laser pulses, and number of SWRs did not differ

between the DS-synchronized and DS-delayed conditions

(Figures S6M–S6O).

We also tested the offline DS-informed suppression of DG

granule cells after tone fear conditioning as a non-hippocampal-

dependent task.36 Mice were trained with five tone-shock pair-

ings, and following DS-synchronized or DS-delayed suppression,

we evaluated fearmemory bymeasuring freezing behavior during

a recall session in which tones were played but no shocks were

given. Comparedwith baseline freezing (measured during the first

tone of training, before any shocks were given), mice exhibited
higher (and equivalent) freezing levels during recall regardless of

whether they had received DS-synchronized or DS-delayed sup-

pression (Figures S6P–S6S).

We finally tested whether DS-synchronized suppression

affected performance in a novel-position recognition task that

is reportedly more sensitive to DG than CA1 lesions, whereas

novel-object recognition requires both DG and CA1.37 This

novel-position task is similar to the novel-object recognition

task in that mice explore four novel objects during the sampling

phase (Figure 6E). However, rather than introducing a new object

in the test phase, the locations of two of the initially sampled ob-

jects are swapped for the subsequent session, leaving the other

two objects in their original locations (Figure 6E). We found that

mice preferentially explored the novel-positioned objects

following DS-delayed suppression of DG granule cells but

showed no such preference following DS-synchronized sup-

pression (Figures 6F, 6G, and S6T).

Recent work has identified that the continued integration of

new items in memory is associated with increased neuronal co-

activity patterns nested in hippocampal theta oscillations.38 In

line with this, we found that the preserved object recognition

memory observed after offline DG cell suppression in the DS-de-

layed, SWR-delayed, and SWR-synchronized conditions was

accompanied by stronger theta coactivity (Figure 6H). This was

not the case following DS-synchronized suppression (Figure 6H),

indicating that DS silencing disrupts the integration of recently

experienced information. Collectively, these results show that

the hippocampal population response to offline DS events is

required for flexible, memory-based recognition of previously

encountered items and associated network gain in theta

coactivity.

DISCUSSION

Our findings establish that offline DSs activate neurons across

the DG and CA regions. DSs are therefore a second hippocam-

pal network event that hosts short timescale coactivation form-

ing population-level neural patterns, like the well-established

SWRs. However, the activity structure and neuronal content

are distinct in DSs. Notably, we found that DSs nest stronger mo-

tifs of coactive neurons, yielding population patterns of higher di-

versity and dimensionality compared with those in SWRs. Like

SWRs, DSs reactivate hippocampal population patterns ex-

pressed in prior waking experience. This offline reactivation is

behaviorally significant: closed-loop suppression of DG granule

cell spiking selectively during offline DS events is sufficient to

disrupt downstream CA principal cell activity and impair flexible

recognition memory for previously encountered items, as well as

the associated network gain in theta-nested neuronal coactivity.

Collectively, these findings identify a core contribution for DSs to

hippocampal patterns of population activity andmemory-guided

behavior.

We started this investigation by observing that DSs increase

spiking activity in principal cells across the DG, CA3, andCA1 re-

gions of the hippocampus. This finding is consistent with previ-

ous reports of DS-evoked spiking activity in DG granule cells

but contrasts with some earlier reports of DS-suppressed CA

pyramidal cell spiking.22,24–26 Notably, Bragin and colleagues
Neuron 112, 1–14, November 20, 2024 9
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Figure 6. Offline suppression of DS activity impairs flexible recognition memory

(A) Behavioral arena used for the recognition memory tasks.

(B–D) Offline DS events are required for novel-object recognition memory. (B) Task layout. During sleep sessions (interposed between novel-object exploration

sessions), closed-loop optogenetic suppression of DG cells in DGGrm2::ArchT mice was achieved using real-time monitoring of either DG or CA1 LFPs to actuate

either DS synchronized (DS-sync) or delayed (DS-delay), SWR synchronized (SWR-sync), or delayed (SWR-delay) DG light delivery. Letters depict object lo-

cations in the task arena (A), with novel objects in blue. (C) Estimation plot showing the percentage of time spent bymice with the novel versus the familiar objects

in each of the four LFP-informed closed-loop conditions. Upper: each data point represents the percentage time spent with the novel object versus the mean

percentage time spent with the three familiar objects; chance performance is shown by the dashed line. Lower: mean difference between novel and familiar object

exploration time. (D) as (C), but directly comparing novel-object preference in the delay versus sync conditions for DS and SWR events. Mice in the DS-delay,

SWR-delay, and SWR-sync conditions, but not the DS-sync condition, exhibited a significant preference for novel over familiar objects (DS-delay and DS-sync:

n = 10 sessions, in 3 mice; SWR-delay and SWR-sync: n = 12 sessions in 3 mice).

(E–G) Likewise, offline DS events are required for novel-position recognition memory. (E) Task layout. Letters depict object locations, with novel positions in blue.

(F) Estimation plot showing the percentage of time spent by DGGrm2::ArchT mice with the novel versus the familiar object locations following sleep sessions with

DS-sync or DS-delay suppression of DG cells. Upper: each data point represents the percentage time spent with objects in novel locations versus objects in

familiar locations; chance performance is shown by the dashed line. Lower: mean difference between novel and familiar location exploration times. (G) As (F) but

directly comparing novel location preference in DS-delay versus DS-sync. Mice in the DS-delay but not the DS-sync condition exhibited a significant preference

for objects in novel over familiar locations (n = 12 novel versus n = 12 familiar locations, 6 sessions, in 4 mice).

(H) In the object recognition task, the theta peer-to-peer coactivity increased from the initial object sampling to the memory test following offline DG cell sup-

pression in the DS-delay, SWR-delay, and SWR-sync conditions, but this was not the case in the DS-sync condition (where mice exhibited no novel-object

preference). Paired estimation plot showing theta coactivity during sampling versus test. Upper: each point represents a beta coefficient for the theta-nested

peer-to-peer coactivity between pairs of hippocampal principal cells (n = 1,537, n = 678, n = 1,719, and n = 1,482 cell pairs, respectively, in 6 mice). Lower: black

dot, mean difference between sampling and test sessions; black ticks, 95% confidence interval.

For (C) and (D) and (F)–(H), the test statistic is the mean difference, shown on the y axis of each lower plot (black dot, mean; black ticks, 95% confidence interval;

filled curve, sampling-error distribution). p values are from paired permutation tests, familiar versus novel (C and F); delay versus sync (D and G); or test versus

sampling (H), *p < 0.05, **p < 0.01, ***p < 0.001.
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reported suppressed spiking in 3/14 CA3 principal cells and sup-

pressed CA1 multi-unit activity in 2/10 rats, showing some,

rather than consistent, CA suppression. In addition, Penttonen

et al. reported suppressed CA1 multi-unit activity and hyperpo-

larization of 4 intracellularly recorded CA1 neurons during DSs

in anesthetized rats. However, DS rates are �10-fold lower

and have smaller amplitude during anesthesia compared with

DSs observed during natural sleep/rest.25 Other studies re-

ported increased CA1 multi-unit activity26 and increased CA3

single-unit spiking during DS events24 in non-anesthetized

mice. Here, we report a variety of firing responses across individ-

ual CA neurons, ranging from strong activation to suppression

during DS events (Figures 1G and 2F). However, our systematic

study (including > 3,500 principal cells; Table S3) shows that DSs

do indeed drive increased mean population spiking activity in

both DG and CA principal cells (Figure 2G).

Previous studies distinguished between two types of DS

events (DS1 and DS2) based on the laminar profile of their trans-

membrane currents.22,24,26 Here, we found that DS2 are more

effective than DS1 events at recruiting hippocampal principal

cells, with higher spike rates per cell and more coactive cells

per event. This result is consistent with a recent report that

DS2 but not DS1 events reliably increase spiking in DG and

CA3 principal cells.24 The same report saw only a slight increase

in CA1 spiking during DS2 and no effect of DS1 events on either

CA1 or CA3 principal cells. They also found that DG principal cell

spiking was suppressed during DS1, in contrast to our study and

previous reports.22 Here we found that both DS1 and DS2 events

evoked significantly increased spiking activity in DG, CA3, and

CA1 principal cells, but again would emphasize the diversity of

CA cell responses, especially during DS1 events (Figure 2F).

The observed differences between studies might reflect differ-

ences between DS events in head-fixed awake mice versus

those in sleep/rest.22,29 They could also indicate a moment-to-

moment diversity across individual DSs, similar to that high-

lighted for individual SWRs39 and theta cycles.40

In this study, we directly compared patterns of population

spiking activity in DSs versus SWRs. We found that population

firing differed across these two types of network events, allowing

a classifier to distinguish DSs versus SWRs based on their

instantaneous vectors of principal cell spiking (Figure 3D). We

also observed that population patterns in DSs are overall more

diverse (less correlated) than those in SWRs, showing stronger

triads of coactive neurons and higher dimensionality (Figures 3

and S4). DS1 and DS2 population patterns yet showed distinct

trends with respect to SWRs: DS1 firing vectors exhibited less di-

versity (i.e., required fewer principal components to explain most

of the variance; Figure S4O) and lower dimensionality (Fig-

ure S4P) than those in SWRs; DS2 firing vectors showed the

opposite trend. Previous work has reported that DS1 and DS2

events relate to distinct entorhinal cortex inputs, with DS1 relying

more on the lateral entorhinal cortex while DS2 events rely more

on the medial entorhinal cortex.24 This suggests a possible divi-

sion of mnemonic labor where DS1 population patterns would

favor non-spatial information streams while DS2 might favor

spatial information.41 We also found that waking patterns of

neuronal coactivity nested in theta oscillations reactivate in

DSs of post-exploration sleep/rest (Figures 4 and S5). Notably,
the distributions of coactivity values in DSs indicate both positive

and negative firing associations (Figure S5E). The coexistence of

correlated and anti-correlated spiking activities in DSs could

reflect a Hebbian learning rule as reported in SWRs,42 whereby

positive and negative changes in hippocampal principal cell

firing associations can shape offline DS reactivation as a function

of recent waking experience. These findings provide important

evidence for offline reactivation of hippocampal waking firing

patterns outside of SWRs, stimulating new avenues for future

work to explore.

To determine whether spiking activity observed during DS

events was required for subsequent memory-guided behavior,

we deployed a closed-loop optogenetic feedback approach to

suppress DG granule cell activity selectively during DS events

(Figures 5 and S6). Real-time inhibition of the DG in Grm2-Cre

mice did not yield a complete suppression of the spiking activity

in dentate granule cells. This also did not alter the magnitude of

DSs, which powerful expression in the DG LFPs could reflect the

high cellular density of the granule cell layer and its strong neural

inputs. This DS-synchronized suppression of DG principal cells

reduced concomitant spiking activity in CA principal cells but

did not affect the expression of SWRs in CA1. When applied in

sleep/rest following object-location exploration, this DS-syn-

chronized neural suppression impaired subsequent memory

performance in both novel-object and novel-position recognition

tasks. Although ours is the first study to leverage a closed-loop

optogenetic approach, these findings are consistent with previ-

ous behavioral studies using electrical stimulation to disrupt hip-

pocampal activity during DSs.32,43,44 While both approaches

provide strong evidence for a central contribution of DS events

in memory-guided behavior, it is important to recognize that op-

togenetic and electrical interventions do not recapitulate natural

hippocampal activity patterns. Moreover, DS2 represents the

dominant type of DS event that exhibits, in comparison with

DS1, stronger firing rate increase of DG, CA3, and CA1 principal

cells (Figure 2G), neuronal recruitment (Figures S3E and S3F),

coactivity (Figure S4L), and lower dimensionality (Figures S4O

and S4P). The major effect of DS activity on memory may be

associated with DS2, a hypothesis that future technological

(closed-loop controller) development for differential manipula-

tion of DS1 versus DS2 would be able to test. We also found

that increased theta coactivity was associated with recognition

memory and that this network gain in theta coactivity was absent

following DS-synchronized neural suppression (Figure 6H). This

finding is consistent with recent work showing that continual

integration of new memory items across behavioral experiences

increases neuronal coactivity.38 Altogether, these results sup-

port the idea that neuronal activity during DS events plays

an important role in subsequent memory-guided behavior, as

SWRs do.

Why does the hippocampus usemore than one offline network

mechanism to support memory? DSs and SWRs are driven by

distinct neural circuits. SWRs depend on excitatory inputs from

CA3 to theCA1 stratum radiatum, generating high-frequency rip-

ples in the CA1 pyramidal layer.7,45–47 DSs are non-oscillatory

events associated with excitatory inputs from the entorhinal cor-

tex to the DG molecular layers.22,24,29 Notably, entorhinal cortex

lesions eliminate DSs but increase SWR incidence.22 Our
Neuron 112, 1–14, November 20, 2024 11
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structural analysis of DS versus SWR population patterns raises

the intriguing possibility that SWRs may be more suited for

lower-dimensional network coactivity serving robust information

flow, whereas DSs may promote higher-dimensional activity, al-

lowing diverse mnemonic patterns to coexist offline and support

flexible, pattern separation for subsequent behavior. Collec-

tively, these findings open important new avenues for future

work to explore the interplay between DS versus SWR events

as two distinct timeframes for the hippocampus to optimize off-

line computations serving memory-guided behavior.
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Buzsáki, G. (2011). Relationships between Hippocampal Sharp Waves,

Ripples, and Fast Gamma Oscillation: Influence of Dentate and

Entorhinal Cortical Activity. J. Neurosci. 31, 8605–8616. https://doi.org/

10.1523/JNEUROSCI.0294-11.2011.

47. Davoudi, H., and Foster, D.J. (2019). Acute silencing of hippocampal CA3

reveals a dominant role in place field responses. Nat. Neurosci. 22,

337–342. https://doi.org/10.1038/s41593-018-0321-z.

48. Quinn, A.J., Lopes-dos-Santos, V., Dupret, D., Nobre, A.C., and Woolrich,

M.W. (2021). EMD: Empirical Mode Decomposition and Hilbert-Huang

Spectral Analyses in Python. J. Open Source Software 6, 2977. https://

doi.org/10.21105/joss.02977.

49. Magland, J.F., Jun, J.J., Lovero, E., Morley, A.J., Hurwitz, C.L., Buccino,

A.P., Garcia, S., and Barnett, A.H. (2020). SpikeForest, reproducible

web-facing ground-truth validation of automated neural spike sorters.

Elife. 9, e55167. https://doi.org/10.7554/eLife.55167.

50. Pachitariu, M., Steinmetz, N.A., Kadir, S.N., Carandini, M., and Harris, K.D.

(2016). Fast and accurate spike sorting of high-channel count probes with

KiloSort. In Adv. Neural Inf. Process. Syst., 29, D.D. Lee, M. Sugiyama,

U.V. Luxburg, I. Guyon, and R. Garnett, eds. (Curran Associates, Inc.),

pp. 4448–4456.

51. Han, X., Chow, B. Y., Zhou, H., Klapoetke, N. C., Chuong, A., Rajimehr, R.,

Yang, A., Baratta, M. V., Winkle, J., Desimone, R., and Boyden, E. S.

(2011). A high-light sensitivity optical neural silencer: development and

application to optogenetic control of non-human primate cortex. Front.

Syst. Neurosci. 5, 18. https://doi.org/10.3389/fnsys.2011.00018.

52. Lopes-dos-Santos, V., Brizee, D., and Dupret, D. (2023). Spatio-temporal

organization of network activity patterns in the hippocampus. Preprint at

bioRxiv. https://doi.org/10.1101/2023.10.17.562689.

53. Skaggs, W.E., McNaughton, B.L., and Gothard, K.M. (1993). An

Information-Theoretic Approach to Deciphering the Hippocampal Code.

In Advances in Neural Information Processing Systems, 5, S.J. Hanson,

J.D. Cowan, and C.L. Giles, eds. (Morgan-Kaufmann), pp. 1030–1037.

54. Mitzdorf, U. (1985). Current source-density method and application in cat

cerebral cortex: investigation of evoked potentials and EEG phenomena.

Physiol. Rev. 65, 37–100. https://doi.org/10.1152/physrev.1985.65.1.37.

55. Guest, O., and Love, B.C. (2017). What the success of brain imaging im-

plies about the neural code. eLife 6, e21397. https://doi.org/10.7554/

eLife.21397.

56. Onnela, J.-P., Saram€aki, J., Kertész, J., and Kaski, K. (2005). Intensity

and coherence of motifs in weighted complex networks. Phys. Rev. E

Stat. Nonlin. Soft Matter Phys. 71, 065103. https://doi.org/10.1103/

PhysRevE.71.065103.

57. Saram€aki, J., Kivel€a, M., Onnela, J.-P., Kaski, K., and Kertész, J. (2007).

Generalizations of the clustering coefficient to weighted complex net-

works. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 027105. https://

doi.org/10.1103/PhysRevE.75.027105.
14 Neuron 112, 1–14, November 20, 2024
58. Costantini, G., and Perugini, M. (2014). Generalization of Clustering

Coefficients to Signed Correlation Networks. PLoS One 9, e88669.

https://doi.org/10.1371/journal.pone.0088669.

59. Estrada, E. (2019). Rethinking structural balance in signed social networks.

Discrete Appl. Math. 268, 70–90. https://doi.org/10.1016/j.dam.2019.

04.019.

60. Toth, R., Zamora, M., Ottaway, J., Gillbe, T., Martin, S., Benjaber, M.,

Lamb, G., Noone, T., Taylor, B., Deli, A., et al. (2020). DyNeuMo Mk-2:

An Investigational Circadian-Locked Neuromodulator with Responsive

Stimulation for Applied Chronobiology. Conf. Proc. IEEE Int Conf Syst.

Man Cybern 2020, 3433–3440. https://doi.org/10.1109/SMC42975.2020.

9283187.

61. Kavoosi, A., Toth, R., Benjaber, M., Zamora, M., Valentı́n, A., Sharott, A.,

and Denison, T. (2022). Computationally efficient neural network classi-

fiers for next generation closed loop neuromodulation therapy - a case

study in epilepsy. In 44th Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), 2022, pp. 288–291.

https://doi.org/10.1109/EMBC48229.2022.9871793.

62. Pennington, Z.T., Dong, Z., Feng, Y., Vetere, L.M., Page-Harley, L.,

Shuman, T., and Cai, D.J. (2019). ezTrack: An open-source video analysis

pipeline for the investigation of animal behavior. Sci. Rep. 9, 19979.

https://doi.org/10.1038/s41598-019-56408-9.

63. Ho, J., Tumkaya, T., Aryal, S., Choi, H., and Claridge-Chang, A. (2019).

Moving beyond P values: data analysis with estimation graphics. Nat.

Methods 16, 565–566. https://doi.org/10.1038/s41592-019-0470-3.

64. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-

019-0686-2.

65. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020).

Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.

1038/s41586-020-2649-2.

66. Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment. Computing in

Science & Engineering 9, 90–95. https://doi.org/10.1109/MCSE.2007.55.

67. Waskom, M.L. (2021). seaborn: statistical data visualization. Journal of

Open Source Software 6, 3021. https://doi.org/10.21105/joss.03021.

68. McKinney, W.. Data Structures for Statistical Computing in Python.

https://doi.org/10.25080/Majora-92bf1922-00a.

69. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

70. Seabold, S., and Perktold, J.. Statsmodels: Econometric and Statistical

Modeling with Python. https://doi.org/10.25080/Majora-92bf1922-011.

https://doi.org/10.1016/j.neuron.2009.05.013
https://doi.org/10.1016/j.neuron.2009.05.013
https://doi.org/10.1523/JNEUROSCI.0294-11.2011
https://doi.org/10.1523/JNEUROSCI.0294-11.2011
https://doi.org/10.1038/s41593-018-0321-z
https://doi.org/10.21105/joss.02977
https://doi.org/10.21105/joss.02977
https://doi.org/10.7554/eLife.55167
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref48
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref48
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref48
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref48
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref48
https://doi.org/10.3389/fnsys.2011.00018
https://doi.org/10.1101/2023.10.17.562689
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref51
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref51
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref51
http://refhub.elsevier.com/S0896-6273(24)00646-9/sref51
https://doi.org/10.1152/physrev.1985.65.1.37
https://doi.org/10.7554/eLife.21397
https://doi.org/10.7554/eLife.21397
https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1371/journal.pone.0088669
https://doi.org/10.1016/j.dam.2019.04.019
https://doi.org/10.1016/j.dam.2019.04.019
https://doi.org/10.1109/SMC42975.2020.9283187
https://doi.org/10.1109/SMC42975.2020.9283187
https://doi.org/10.1109/EMBC48229.2022.9871793
https://doi.org/10.1038/s41598-019-56408-9
https://doi.org/10.1038/s41592-019-0470-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.25080/Majora-92bf1922-00a
http://refhub.elsevier.com/S0896-6273(24)00646-9/optaAuLnMe5Hr
http://refhub.elsevier.com/S0896-6273(24)00646-9/optaAuLnMe5Hr
http://refhub.elsevier.com/S0896-6273(24)00646-9/optaAuLnMe5Hr
http://refhub.elsevier.com/S0896-6273(24)00646-9/optaAuLnMe5Hr
https://doi.org/10.25080/Majora-92bf1922-011


ll
OPEN ACCESSArticle

Please cite this article in press as: McHugh et al., Offline hippocampal reactivation during dentate spikes supports flexible memory, Neuron (2024),
https://doi.org/10.1016/j.neuron.2024.08.022
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV9-CAG-Flex-ArchT-GFP UNC Vector Core N/A

Experimental models: Organisms/strains

C57BL/6J mice Charles River 632

Grm2-Cre Tg(Grm2-cre)MR90Gsat/Mmucd MMRRC MMRRC_034611-UCD

Nestin-Cre B6.Cg-Tg(Nes-Cre)1Kln/J Jackson Laboratories IMSR_JAX:003771

Software and algorithms

Intan RHD2000 Intan Technologies RHD2164

Positrack Kevin Allen N/A

Empirical Mode Decomposition in Python Quinn et al.48 N/A

Kilosort via SpikeForest Magland et al.49; Pachitariu et al.50 N/A

Other

12um tungsten wires California Fine Wire M294520

Optic fibers Doric lenses MFC_200/230-0.37_25mm_RM3_FLT

Head-stage amplifier Intan Technologies RHD2164

561nm diode-pumped solid-state laser Laser 2000 CL561-100
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
These experiments used adult (4–6 months old) wild-type C57Bl6/J mice (Charles River Laboratories, Kent, UK) or hemizygous

Nestin-Cre mice (Jackson Laboratories; B6.Cg-Tg(Nes-Cre)1Kln/J, stock no. 003771, RRID: IMSR_JAX:003771) for the initial inves-

tigation of principal cell spiking in DSs and SWRs using tetrodes or silicon-probe recordings (Figures 1–4). To optogenetically target

DG granule cells, we used adult metabotropic-glutamate-receptor 2-Cre (Grm2-Cre) hemizygous male mice (Figures 5 and 6). This

Grm2-Cre mouse strain was obtained from the Mutant Mouse Resource and Research Center (MMRRC; Tg(Grm2-cre)MR90Gsat/

Mmucd; stock no. 034611-UCD, RRID:MMRRC_034611-UCD) at University of California at Davis, an NIH-funded strain repository,

andwas donated to theMMRRCbyNathaniel Heintz, Ph.D., The Rockefeller University, GENSAT andCharles Gerfen, Ph.D., National

Institutes of Health – National Institute of Mental Health. All mice were group housed with same-sex littermates until the start of the

experiment and singly housed after surgery. Mice had free access to food and water throughout, in a dedicated housing room with a

12/12 h light/dark cycle (7 a.m.–7 p.m.), 19�C–23�C ambient temperature and 40–70 % humidity. This study used mice with good

health/immune status, that were not involved in previous procedures, and were drug and test naı̈ve at the start of the experiments.

Mice were adult males and the influence (or association) of age and sex, or both on the results of the study was not tested. This rep-

resents a limitation to this research’s generalizability. All experiments were performed between 8 a.m.–6 p.m. during the light-on

period, that is when mice sleep more. Experiments were performed in accordance with the Animals (Scientific Procedures) Act,

1986 (United Kingdom), with final ethical review by the Animals in Science Regulation Unit of the UK Home Office.

METHOD DETAILS

Viral vectors
AnAAV carrying a double-floxed inverse open reading frame (DIO) Cre-dependent opsin under the CAGpromoter was used to deliver

Archaerhodopsin (ArchT) (Han et al.51) into DG granule cells (AAV9-CAG-Flex-ArchT-GFP, titer: 8.3 3 1012 TU / mL, University of

North Carolina).

Surgical procedures
Mice received viral injections andmicrodrive implantations under gaseous isoflurane anaesthesia (�1% in 1 L /minO2), with systemic

and local analgesia administered subcutaneously (meloxicam 5 mg / kg; buprenorphine 0.1 mg / kg; bupivacaine 2 mg / kg).

Viruses were injected bilaterally into the dorsal DG (3 3 200 nL per hemisphere; at the following stereotaxic coordinates from
Neuron 112, 1–14.e1–e8, November 20, 2024 e1
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bregma: anterior-posterior: -1.6, -2.4, -2.4; mediolateral: ±1.0, ±1.2, ±1.5; dorsoventral: -1.7, -1.7, -1.7 mm, respectively), and deliv-

ered using a pulled glass micropipette (�16 mm i.d.) at a rate of 100 nL min�1, with an additional 100 nL min�1 diffusion time with the

pipette in situ. In a separate surgery, mice were implanted with a microdrive containing twelve- or fourteen-independently movable

tetrodes bilaterally targeting DG, CA3, and CA1, and two optic fibers (Doric Lenses Inc., Quebec, Canada) positioned bilaterally

above the dorsal DG. Tetrodes were constructed by twisting together four insulated tungsten wires (12.7 mm diameter, California

Fine Wire, CA, USA) which were briefly heated to bind them together into a single bundle. Each tetrode was loaded in one cannula

attached to a 6 mm long M1.0 screw to enable its independent depth manipulation. A separate group of mice were implanted with

unilateral single-shank 64-channel silicon-probe (model: ASSY-236 H3, 8 mm; Cambridge Neurotech, Cambridge, UK; stereotaxic

coordinates from bregma: anterior-posterior: -2.0; mediolateral: -1.7 mm); these mice did not receive prior viral injections.

Recording procedures
Following the implantation surgery, mice recovered for at least seven days before familiarization to the recording procedure. Mice

were handled daily and exposed to the sleep-box for > 0.5 h per day for at least four days. During this period, tetrodes / silicon-probes

were slowly lowered to the proximity of the cell layers. Once at the correct depth, silicon-probes were left in the same position for the

rest of the experiment. Tetrodeswere lowered into theCA1, CA3 pyramidal or DGgranule cell layers on themorning of each recording

day in search of multi-unit spiking activity, using the electrophysiological profile of the local field potentials including sharp-wave rip-

ples, gamma oscillations, and dentate spikes to further guide placement. Tetrodeswere left in position for�1.5–2 h before recordings

began on that day. At the end of each recording day, tetrodes were raised (�150 mm) to protect hippocampal the cell layers from

potential mechanical damage overnight. We lowered again each individual tetrode on the next morning in search of cells, making

it unlikely that the recorded units are the same neurons across days. During recording sessions, mice explored open-field environ-

ments (41 cm diameter cylinder, or 41 3 41 cm square box, both with 30 cm high walls), or were placed in a sleep box containing

sawdust bedding and nesting material (123 123 28 cm, length3 width3 height). The instantaneous speed and the theta-to-delta

ratio profiles for DS and SWR events corresponded to those of sleep (Figures S1G and S1H). However, in the absence of electromy-

ography signals or other additional signals in defining a sleep stage, we here refer to sleep/rest. Each open-field or sleep box

recording session lasted �15-30 min. Experiments were performed under dim light conditions (�20 lux) with low-level background

noise (�50 dB).

Light delivery
A 561 nm diode pumped solid-state laser (Crystal Laser, model CL561-100; distributer: Laser 2000, Ringstead, UK) was used to

deliver green-yellow light bilaterally to the dorsal DG (�2-4 mW) via a 2-channel rotary joint (Doric Lenses Inc.).

Multichannel data acquisition
Electrode signals were amplified, multiplexed, and digitized using a single integrated circuit (headstage) located on the head of the

animal (RHD2164, Intan Technologies, USA; http://intantech.com/products_RHD2000.html). The amplified and filtered (pass band

0.09 Hz to 7.60 kHz) electrophysiological signals were digitized at 20 kHz (RHD2000 Evaluation Board) and saved to disk with the

synchronization signals from the positional tracking and laser activation. To track the location of the animal, three LEDs were

attached to the headstage and captured at 25 frames per second by an overhead color camera.

Spike sorting and unit isolation
Spike sorting and unit isolation were performed via automatic clustering software Kilosort50 (https://github.com/cortex-lab/KiloSort)

followed by graphically based manual recombination using cross-channel spike waveforms, auto-correlation histograms and cross-

correlation histogramswithin the SpikeForest framework (https://github.com/flatironinstitute/spikeforest)49. All sessions recorded on

a given day were concatenated and cluster cut together to monitor cells throughout the day. Each unit used for analyses showed

consistent spike waveforms and stable firing rates throughout the entire recording day. Tetrode location in the dorsal-ventral axis

for each recording day (Figure S1C) was determined using laminar LFP signatures, as described in detail in Lopes-dos-Santos

et al.52, and later confirmed in the ex vivo histology (Figure S1B).

Principal cell versus interneuron classification
Hippocampal principal cells were distinguished from interneurons by the trough-to-peak width of the spike waveform, as previously

described.52 Briefly, to evaluate the waveform consistency for each unit, we used the waveform with the maximum amplitude across

the tetrode channels for each cluster. We compared the prominence of a unit mean waveform amplitude to the standard deviation

stemming from all its spikes by computing a waveform score:

wvscore =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1

ðwi=siÞ2
n

vuut

wherewi is the value of the mean waveform at sample i, si is the standard deviation at sample i across all spikes, and n is the num-

ber of waveform samples. This metric quantifies the relative magnitude of the mean waveform amplitude against the spike-to-spike
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variability. Clusters with a waveform score above 0.75 and a refractory period violation below 2% (quantified as the proportion of

intervals shorter than 2 ms in the ISI distribution) were included for further analyses. We categorized units as either putative interneu-

rons or principal cells based on the width of their waveform as indicated by the trough-to-peak latency. In a prior dataset of �4,000

neurons, we noted a bimodal distribution in trough-to-peak latency. Fitting this with a 1-dimensional, 2-component GaussianMixture

Model (GMM), we set the classification threshold where the two Gaussian components intersect: units with latencies above were

labeled as putative principal cells, and those below as putative interneurons. The same inclusion criteria and classification proced-

ures were used for DG, CA3 and CA1 neurons. In total, this study includes 3,619 hippocampal principal cells (CA1, n = 1,322; CA3,

n = 573; DG, n = 1,724; from 134 total recording days in 25 mice).

Local field potential signals
LFP signals were processed by first applying an anti-aliasing filter (8th-order Chebyshev type I filter) to the wide band signals sampled

at 20 kHz. These signals were then down-sampled to 1,250 Hz using the decimate function from the signal submodule of Scipy

(version 1.11.2).

Dentate spike detection
Dentate spikes were detected during sleep sessions from LFPs recorded from tetrodes located in the DG granule cell layer or silicon-

probeswith recording contacts in the DGgranule cell layer. In silicon-probe recordings, we initially subtracted the LFP signals from all

channels using a reference channel found in the stratum oriens. LFPs were band-pass filtered (1–200 Hz, using a 4th order Butter-

worth filter). The mean and standard deviation of the LFP amplitude were calculated across the entire sleep session and peaks that

exceeded a threshold of six times the median absolute value of the filtered signals were designated as dentate spikes. The time bin

with the largest local maximumwas taken as the peak of the dentate spike, and this timestamp was recorded. If more than one peak

appeared within a 50 ms frame, we retained only the highest amplitude peak. On recording days with several tetrodes in the DG, we

used the tetrode with the largest mean DS amplitude to select DS event timestamps. Across all tetrode recordings we detected

32,215 DS events in total (mean ± SEM: 441.3 ± 29.2 per day, from 73 recording days in 12 mice); in silicon-probe recordings we

detected 15,067 DS events in total (mean ± SEM: 1676.1. ± 316.5 per day, from 8 recording days in 3 mice).

Sharp-wave ripple detection
For the LFPs of each pyramidal CA1 channel, we subtracted the mean across all channels (common average reference), band-pass

filtered for the ripple band (80–250 Hz; 4th order Butterworth filter) and their envelopes (instantaneous amplitudes) were computed by

means of the Hilbert transform. The peaks (local maxima) of the ripple band envelope signals above a threshold (5 times the median

envelope of that channel) were regarded as candidate events. The onset and offset of each event were determined as the time points

at which the ripple envelope decayed below half of the detection threshold. Candidate events passing the following criteria were

determined as SWR events: (i) ripple band power in the event channel was at least twice the ripple band power in the common

average reference (to eliminate common high frequency noise); (ii) each event had at least four ripple cycles (to eliminate events

that were too brief); (iii) ripple band power was at least twice the supra-ripple band defined as 200-500 Hz (to eliminate high frequency

noise, not spectrally compact at the ripple band, such as spike leakage artefacts). For events passing these criteria, the local

maximumof each envelope was taken as the peak of the SWR, and these timestampswere recorded. On recording days with several

tetrodes in the CA1 pyramidal layer, we used the tetrode with the largest mean ripple envelope amplitude to select SWR events. In

tetrode recordings we detected 65,370 SWR events (mean ± SEM: 895.0 ± 82.3 per day, from 73 recording days in 12 mice).

Place maps
To generate place maps, we divided the horizontal plane of the recording enclosure into spatial bins of 1.43 1.4 cm to generate the

spike count map (number of spikes fired in each bin) for each neuron and the occupancymap (time spent by the animal in each spatial

bin) in each task session. All mapswere then smoothed by convolutionwith a two-dimensional Gaussian kernel (s.d. = 1.2 bin widths).

Finally, spatial rate maps were generated by normalizing the smoothed spike count maps by the smoothed occupancy map.

Spatial Information
The amount of spatial information conveyed by the spike train of a given cell was calculated using the formula proposed by Skaggs

et al.53:

Information per spike =
XN
i = 1

pi

li

l
log 2

li

l

where i = 1, 2..N represents each spatial bin of the environment, pi is the probability of occupancy of bin i, li is themean firing rate in

bin i, and l is the mean firing rate of the cell over all spatial bins.
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Peri-event time histograms (PETHs)
For analysis, we excluded all DS and SWR events that occurred within 50 ms of one another. We constructed PETHs over 400 ms

windows, 200 ms either side of the peak DS amplitude or the peak of the SWR envelope, using a 1 ms bin width. The mean firing rate

of each neuron was calculated during each 1 ms bin over the 400 ms window for each event. Z-scored firing rates were generated

(over the DS-triggered or SWR-triggered average) separately for each neuron by calculating the mean and standard deviation over

the 400 ms PETH:

zi =
ðxi � xÞ

s

where zi is the Z score at time bin i, xi is the firing rate in time bin i, x is the mean firing rate across all time bins, and s is the standard

deviation of the firing rate across all time bins. The Z-scored firing rate of each neuron was then smoothed using a 3-point moving

average to eliminate spurious peaks in low firing rate neurons. For a cell to be classified as significantly activated during DS and/or

SWR events, the firing rate within ± 20ms of the event peak had to be > 3 standard deviations (s.d.) above baseline (calculated as the

mean firing rate over the 400 ms window). We also calculated the proportion of activated cells as a function of activation threshold

(2 < Z score < 4; Figures S2H and S3E).

Current source density analysis

Current sources and sinks were estimated from LFP recordings taken from single-shank 64-channel silicon-probes spanning the so-

mato-dendritic axis of CA1 principal cells and reaching the inferior blade of the DG. LFP signals were first down-sampled to 1250 Hz.

The current source density54 unscaled signal at time t and electrode n, CSD[t]n, was estimated as:

CSD½t�n = � �
LFP½t�n� 1 � 2 3 LFP½t�n + LFP½t�n+1

�
where LFP[t]n�1, LFP[t]n and LFP[t]n+1 are the LFP signals at time t recorded from neighboring electrodes (n�1 and n+1 are the chan-

nels immediately above and below n, respectively, with 20 mm spacing between electrodes). The silicon-probe recording site in the

pyramidal layer was identified as the one with largest ripple-band power. We defined the location of radiatum and lacunosum mo-

leculare layers according to the sharp-wave and theta laminar profiles, as previously described.52 We sorted dentate spike events

into type 1 (DS1) or type 2 (DS2) in the following way. First, we calculated the CSD estimates for all DSs at the peak of each event

and used PCA to find the first two Principal Components from the resulting CSD traces. These principal components had as

many dimensions as the number of silicon-probe channels (64). We then used a 2-component Gaussian Mixture Model to classify

the events based on their projection onto the first two principal components. This consistently resulted in two event classes having

the strongest sinks in different areas of themolecular layer. In line with previous research,22,24 we classified the events with the stron-

gest sink in the outermost part of the molecular layer as DS1, and events with their sink closer to the granular layer as DS2. Based on

CSD classification, event proportions were DS1: 0.35; DS2: 0.65 (5274 DS1 versus 9793 DS2, based on 15,067 events from 8

recording days in 3 mice).

Linear discriminant analysis classifier
To distinguish between DS1 and DS2 events using only the LFP traces, we trained a linear discriminant analysis (LDA) classifier using

silicon-probe recorded LFPs from the granule cell layer (https://doi.org/10.5281/zenodo.10034433). LFP signals were first down-

sampled to 1250 Hz and low-pass filtered at 50 Hz. We extracted 400 ms epochs centered around the peak of each DS (-200

to +200 ms, with 0.8 ms bin width), providing 500 time-based features (dimensions), one for each time bin, for each LFP trace.

We then performed PCA on all silicon-probe-recorded DS LFP traces (15,067) to extract the number of components explaining

90% of the variance. This resulted in 16 principal components, which were then used to train a LDA classifier. We generated 20

models by, each time, randomly selecting 75% of the dataset, which was labelled as DS1 or DS2 based on the CSD classification

described above, and then testing the classifier on the remaining (unlabeled) 25% of data. The classifier success rate was: median

(IQR) = 85.4 (85.3–85.6) %. We then used the model with the highest accuracy to classify DS1 and DS2 events from LFPs recorded

from the granule cell layer in our tetrode-recorded data. From tetrode-recorded LFPs, the proportions of type 1 and type 2 DS events

were: median (IQR) DS1 = 0.34 (0.25–0.38); DS2 = 0.66 (0.62–0.75), based on 10,337 DS1 versus 21,740 DS2 events in 73 recording

days in 12 mice.

Population spiking vectors

We generated event-based hippocampal population vectors of instantaneous principal cell spiking for every DS and SWR event us-

ing 50mswidewindows centered on the peak of the DS or the peak envelope of the CA1 ripple (±25ms from the peak). In addition, we

calculated the spiking activity of hippocampal principal cells in equivalent 50 ms (‘no event’) control epochs, that contained neither

DS nor SWRs. Baseline periods were selected from the same sleep sessions and excluded all epochs ± 250 ms either side of any DS

or SWR events. To calculate the proportion of coactive neurons in each time window, we calculated the number of simultaneously

active hippocampal principal cells (i.e., cells firing at least one spike during the 50 ms window) by the total number of simultaneously

recorded hippocampal principal cells. We then calculated the mean proportion of coactive cells for each recording session. For in-

clusion in these analyses, each recording session required aminimumof 100 of each type of event (DS1, DS2, SWR) and aminimumof

20 simultaneously recorded hippocampal principal cells.
e4 Neuron 112, 1–14.e1–e8, November 20, 2024
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Population-level sparsity

The sparsity S of a given population firing vector x was calculated using the Gini index33,34,55 as:

S =

PN
i = 1

ð2i � N � 1Þxi

N
PN
i = 1

xi

where x is the population vector containing, in ascending order, the spike counts discharged by each principal cell in a 50 ms time

window (centered on the peak of the SWR, DS), N is the length of that vector (i.e. the number of simultaneously recorded principal

cells), and i is the rank of spike counts in ascending order. Population vectors where the total number of spikes is more evenly distrib-

uted between neurons have a lower Gini index (lower sparsity) than population vectors where the total number of spikes is concen-

trated in a few neurons (higher sparsity).

Logistic regression classifier

Weused a logistic regression classifier to distinguish between population vectors of hippocampal principal cell spiking activity during

DS, SWR, or equivalent duration (50 ms) control vectors that were taken from 200–250 ms periods before or after the peak of either

the DS or SWR events. For each recording session, we generatedmatrices of these population vectors (cells3 epochs) for these four

different event-types, and then binarized the spike counts (i.e., spike count > 0 = 1, else 0) to control for the influence of firing rate

differences between neurons. For each recording day, we used the event with the lowest number of epochs to determine the training

set size – for example, if there were 200 DS events, we used 75% (150 population vectors) as the DS training set, and randomly sub-

sampled the SWR matrix for 150 SWR population vectors (with identical principal cells). This way, the training input to the classifier

was balanced across event types. Similarly, the testing set consisted of the remaining (unlabeled) 25%of population vectors from the

DS population vectors plus an equivalent number of SWR population vectors (e.g., 50 DS population vectors and 50 SWR population

vectors, subsampled from the remaining SWR testing matrix). For each recording day, we ran three models: one to classify event

epochs, one to classify pre-event epochs and one to classify post-event epochs. Model accuracy was measured as the proportion

of correctly classified events (DS versus SWR, or pre-DS versus pre-SWR, respectively).

Peer-to-peer coactivity analysis

We constructed hippocampal population graphs that represent the coactivity relationships between all pairs of principal cell spike

trains recorded during a given sleep or exploratory session. These coactivity graphs were computed using 50 ms time windows

for DS and SWR events and theta cycles as time windows for active exploratory sessions. To further control for the shared influence

of the general network activity on peer-to-peer coactivity, we used for any two neurons ði; jÞ the regression coefficient b ij obtained by

fitting the GLM (Figure 3A):

xj � bijxi +aijP

where xj; xi are the Z-scored event-nested spike trains of individual neurons j (the target) and i (the predictor), and P is the summed

activity of the other N � 2 neurons,

P =
XN�fi;jg

n = 0

xn

with aij weighting the influence of the population contribution to the activity of target neuron j.

The recorded neurons (and their coactivity associations) are therefore the nodes (and their edges) in the coactivity graph of each

task session. We described each graph by its adjacency matrix, A, as the N 3 N square matrix containing the pairwise coactivity

relations within the network, yielding a weighted graph with no self-connections:

A =

0
@ b0;0 / b0;N

« 1 «
bN;0 / bN;N

1
A

with bi;i = 0 ci in N, and the symmetry in the weights of the network being ensured by setting A = A+AT

2 to form an undirected graph.

Clustering coefficient
We computed the clustering coefficientCi to characterize the network’s local coactivity structure by scoring the triadic firing relation-

ships established by each neuron i with the other neurons in the population, using the formula proposed by Onnela et al.56–58:

Ci =

P
jq

�cbij
cbiq

cbjq

�1=3
kiðki � 1Þ

where j and q are neighbors of neuron i, all edgeweights are normalized by themaximum edgeweight in the network bb = b=maxðbÞ,
and ki is the degree of neuron i, which in these weighted graphs with no self-connection is equal to the number of neurons minus one.
Neuron 112, 1–14.e1–e8, November 20, 2024 e5



ll
OPEN ACCESS Article

Please cite this article in press as: McHugh et al., Offline hippocampal reactivation during dentate spikes supports flexible memory, Neuron (2024),
https://doi.org/10.1016/j.neuron.2024.08.022
Note that this formula accounts for negative edges, yielding a negative value when there is an odd number due to the negative edges

in the triad; it is positive otherwise. This method to assess firing relationships in the neuronal population of the hippocampus as a

signed network where both positive and negative edges (i.e., correlated and anti-correlated spike trains) coexist leverages from

past studies investigating community organization in social networks, indicating that triads represent the smallest motif capturing

‘‘structural balance’’ in patterns of peer-to-peer relationships.59

Single-neuron coactivity strength
We defined the single-neuron coactivity strength as the average pairwise coactivity relation of a given node in a weighted graph. As a

reference, the strength in a weighted graph can be compared to the degree in a binary graph, which accounts for the number of the

node’s neighbors. Here, the strength Si of a node i is the average across all the weights bij of the edges projected from that node:

Si =

PN
j = 0

bij

N

where N is the number of neurons j that node i projects to.

Population vector similarity
Population vectors of hippocampal principal cell spiking activity were generated for baseline, SWR, and DS events as described

above, yielding separate (cell 3 event number) matrices of spike counts for each event-type. To remove potential biases caused

by unequal numbers of events, we used the event-type with the fewest epochs to determine the final matrix size. For example, if there

were 200 DS events in a given recording session, we randomly subsampled the SWR and baseline matrices to extract 200 SWR and

200 baseline population vectors (with identical principal cells) for comparison. Next we binarized these matrices (spike count > 0 = 1,

else 0). Then we assessed the self-similarity for each event matrix (cells 3 event number) by computing the Pearson correlation co-

efficient for every pair of population vectors from the same event-type, and then calculating the mean across all of these correlation

coefficients. As an alternative, we also calculated the Jaccard similarity coefficient (J), whichmeasures the size of the intersection (i.e.

overlap in active units) between pairs of population vectors (A, B), divided by the size of the union:

JðA;BÞ =
jAXBj
jAWBj

Population dimensionality
We estimated the dimensionality of the principal cell population firing structure during SWRs andDSs from activity matrices that were

matched for neuron identity and the number of DS and SWR events. We applied Principal Component Analysis (PCA) to each activity

matrix, using the number of simultaneously recorded principal cells as themaximum number of components. Eachmatrix required at

least 20 principal cells for inclusion in the analysis. We then extracted the number of components explaining 90% of the variance in

these population vectors and scaled this by the total number of neurons in each matrix (Figures 3L, S4M, and S4P). We also show

dimensionality for a range of explained variance values (Figures S4N and S4O). Note that the ratio of DG to CA cells in these matrices

did not significantly affect the dimensionality estimate (Table S1).

Theta-cycle detection
Theta cycles were detected as described in Lopes dos Santos et al. Briefly, we used masked Empirical Mode Decomposition48;

https://pypi.org/project/emd/) to separate CA1 LFPs into oscillatory components termed intrinsic mode functions (IMFs). We delin-

eated individual theta cycles from their troughs and peaks, i.e. the local maxima and minima of the theta IMF. Theta cycles were

defined as peak-trough-peak sequences with trough-peak and peak-trough intervals between 31-100 ms and peak-to-peak dis-

tances between 71-200 ms. Note that this method is designed to detect chains of theta cycles but to do so it identifies each cycle

independently.

Reactivation of waking coactivity patterns
We leveraged our pairwise peer-to-peer coactivity measure (as described above; Figure 3A) to estimate DS and SWR reactivation.

With this, we compared the tendency of principal cell pairs to co-fire in theta cycles during exploration (theta coactivity) with the ten-

dency to co-fire in DS (or SWR) during the following post-exploration sleep/rest period (post-DS or post-SWR co-firing), controlling

for their baseline co-firing in the pre-exploration sleep/rest period before (pre-DS or pre-SWR co-firing) and mouse identity, using a

linear mixed model:

Post� b0 + btheta + bpre + ʋmouseID + e

where b0 is the intercept of the regression line, btheta is the regression coefficient for the theta co-firing, bpre is the regression co-

efficient for the pre-exploration offline co-firing (in DS or SWR events), ʋmouseID is the individual mouse identity, and e the error term.

Likewise, we compared the tendency of principal cell pairs to co-fire in theta cycles during exploration (theta coactivity) with the
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tendency to co-fire in DS or SWR during the pre-exploration sleep/rest period (pre-DS or pre-SWR co-firing), controlling for their

post-exploration co-firing in the sleep/rest period after (post-DS or post-SWR co-firing) and mouse identity, using the reverse linear

mixed model:

Pre� b0 + btheta + bpost + ʋmouseID + e

From these LMMs, we extracted the b coefficients predicting post-SWR or post-DS coactivity from theta coactivity (controlling for

pre-SWR or pre-DS coactivity, respectively) and tested their significance in two ways. First, we performed control GLMs using the

pre-DS (or pre-SWR) coactivity as the dependent variable and the theta coactivity and post-DS (or post-SWR) coactivity as the in-

dependent variables. In thesemodels, pre-event, post-event and theta coactivity were entered as fixed-effects andmouse identity as

random-effects, using the restricted maximum likelihood method (implemented using the MixedLM class, and fit() method with

default parameters, from the statsmodels library (Seabold and Perktold, 2010) in Python3.10). Second, we constructed a random

probability distribution of b weights for theta coactivity by shuffling the cell pair identity, thereby generating a null distribution (based

on 1000 LMMs, each time randomly shuffling cell-pair identity).

Closed-loop optogenetic interventions
For DS-informed interventions, real time detection of DSs was achieved by first high pass filtering the DG LFP signals (5 Hz) using the

on-board signal processing capabilities of the Intan RHD evaluation board (RHD2000, Intan Technologies, USA) and triggering a laser

pulse if the LFP signal exceeded a voltage-threshold. Thresholds for DS-onset detection were set for eachmouse during a sleep ses-

sion at the start of each recording day so that DS events were consistently detected (�3 S.D. above mean signal amplitude).

Threshold detection triggered a digital transistor-transistor logic (TTL) output pulse from the RHD interface to a Master 8 stimulation

timing device (A.M.P.I., Jerusalem, Israel), which in turn sent a 100 ms duration square-wave pulse to activate the laser. In the ‘DS-

synchronized’ condition, the laser was triggered with zero latency from DS-onset, whereas in the ‘DS-delay’ condition the laser was

triggered 100 ms after DS detection (Figures 5 and 6). The rates of false negatives (DS not triggering laser pulse) and false positives

(laser pulse emitted for LFP trace not meeting DS criteria) were 1.8±0.6% and 4.7±0.4%, respectively. The laser delivered yellow-

green light (561-nm) into the dentate gyrus, which in DGGrm2::ArchT mice activated the outward proton pump, Archaerhodopsin T

to suppress spiking activity in DG granule cells. To investigate changes in firing rates in individual hippocampal principal cells during

light-delivery, we constructed PETHs over 400mswindows, 200ms either side of DS-onset, using a 1ms bin width and extracted the

peak firing rate during DS-synchronized light-delivery versus DSs with no light delivery. In addition, we Z-scored the binned spike

trains and calculated the mean Z score between DS-onset and 100 ms after DS-onset for each hippocampal principal cell during

DS-synchronized light-delivery versus the equivalent 100 ms no-light period in the DS-delay condition.

For SWR-informed interventions, the Intan evaluation board was configured with firmware enabling additional filtering. Five oper-

ations were performed on the continuously acquired CA1 wideband LFP signal to provide a real time estimate of the instantaneous

power in the ripple-band.60,61 (1) To enable low-latency processing, the signal was first down-sampled to 2.5 kHz by averaging the

raw 20 kHz data stream with a sliding window of 8 samples with no overlap. (2) This signal was then high-pass filtered (using a 1st

order digital infinite impulse response filter with a corner frequency of 1.6 Hz to remove amplifier offset and electrode drift). Next, the

signal was (3) band-limited to 100–200 Hz with a 4th order Butterworth filter, (4) rectified by taking its absolute value, and (5) amplified

128-fold and smoothed with an exponential moving average operation over an equivalent window size of 32 samples (12.8 ms). To

detect SWR events in this band-power estimate, the threshold level for eachmousewas set during a sleep session at the start of each

recording day to ensure consistent (�3 S.D. abovemean power) detection throughout the day. On detecting a threshold crossing, the

Intan recording controller delivered a 5 ms TTL pulse to a Master 8 stimulation timing device (A.M.P.I., Jerusalem, Israel). Analogous

to the DS-informed interventions, in the ‘SWR-synchronized’ condition the laser was triggered with zero latency from SWR-onset,

whereas in the ‘SWR-delay’ condition the laser was triggered 100 ms after SWR detection.

Recognition memory tasks
On each day of both the novel-object and novel-position recognition tasks, mice explored a square-walled open field (Figure 6A; the

‘object arena’) containing four objects, each positionedmidway along a given wall,�1cm from the wall edge. Objects used were�33

33 4 cm (width3 depth3 height) objects (e.g., Lego� blocks or other similar items). During the first session in the object arena, mice

explored four completely novel objects (‘sampling’ session, 10 min). After the sampling session, mice were placed into a sleep box

where they received DG-targeting light delivery that was either synchronized to event detection (DS-synchronized or SWR-synchro-

nized condition) or delayed by 100 ms from event detection (DS-delay or SWR-delay condition), as described above (sleep/rest ses-

sion, 20 min). In the novel object recognition task, before the start of the next test session, one of the four objects was replaced with a

different (and completely novel) object, and mice then explored the four objects again (‘test 1’ session, 10 min). This process was

repeated, with another sleep session (�20 min, with either DS-sync or DS-delay light-delivery), followed by another object exploration

session with one completely novel object and three previously encountered objects (‘test 2’ session, 10 min). In the novel position

recognition task, the locations of two of the initially sampled objects were swapped (e.g. North and West), whereas the other two ob-

jects remained in their original positions. In the novel position task, only DS-the synchronized andDS-delay conditions and only the first

test sessionwere used. During each test session, wemeasured the time spent exploring each object andwe calculated the percentage

time spent investigating the novel object (or novel positioned objects) versus the mean percentage time spent investigating the familiar
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objects (i.e., those objects seen in the previous session and/or those in the same locations). For analysis, four ‘object-zones’ were

created by dividing the arena into nine equal sized square zones (�123 12 cm), such that four of these zones contained the objects.

Time spent in the object zone was determined directly from the automated tracking data. Between sessions, the floor of the maze and

the objects were cleaned with water. On any given day, mice received the same light-delivery condition.

Tone fear conditioning task
Fear conditioning was conducted in one of four operant chambers eachwith distinct visual cues (ENV-307A, Med Associates Inc., IN,

USA). Mice were exposed to five auditory cues (either 2900 Hz tone or white noise, 72 dB, 30s duration), each co-terminating with a

mild foot-shock (0.3mA, 0.5 s). Themean ITI was 74s (range: 60 to 90s). Immediately after fear conditioning, micewere removed from

the operant chamber and placed into the sleep box where they received DS-sync or DS-Delayed DG cell silencing for 45 minutes.

For the recall session, mice were then placed into a different operant chamber than the one where they received conditioning (to

reduce the impact of contextual cues on recall). Mice were exposed to the same five auditory cues but no foot-shocks were given.

Fear memory was assessed bymeasuring freezing responses during the first two cues presented in the recall session (before extinc-

tion occurs) and comparing these responses to freezing responses to the first cue during training (before any shocks were given).

Freezing was measured using automated movement detection software (ezTrack, 62) and expressed as a % of tone duration (i.e.

freezing for 15s during a 30s tone = 50% freezing).

Tissue processing and immunohistochemistry
At the completion of experiments, mice were deeply anesthetized with pentobarbital and perfused transcardially with 0.1 M PBS fol-

lowed by 4% paraformaldehyde (PFA) in PBS. Brains were extracted and kept in 4% PFA for �24–72 h and then transferred to PBS

(with 0.05% sodium-azide). For tetrode localization, free-floating sections (50 mm) sections were mounted on slides and imaged at3

5 using a Zeiss microscope (AxioImager M2; Zeiss, Plan-Neofluar 53 /0.16 objective). For immunostaining, free-floating sections

(50 mm) were rinsed in PBS with 0.25% Triton X-100 (PBS-T) and were blocked for 1 hour at�20�C in PBS-T with 10% normal donkey

serum (NDS). Sections were then incubated with primary antibodies diluted in 3% NDS blocking solution and incubated at 4�C for

72 hours (GFP anti-chicken, 1:1,000, Aves Labs, catalog no. GFP-1020; NeuN guinea pig, 1:500, Synaptic Systems, catalog no. 266

004). All sectionswere rinsed three times for 15min inPBS-T and incubated for 4 hours at�20�C in secondary antibodies in the blocking

solution (Cy3 donkey anti-guinea pig, 1:400, Jackson ImmunoResearch, catalog no. 706-165-148; goat anti-chicken 488, 1:1,000,

ThermoFisherScientific, catalog no. A-11039). Sectionswere then rinsed three times for 15min inPBS-T,with somesections then incu-

bated for 1minwithDAPI (0.5mgml�1, Sigma,D8417) diluted inPBS to label cell nuclei before three additional rinse stepsof 10min each

in PBS. Sections weremounted on slides, cover-slipped with Vectashield (Vector Laboratories, catalog no. H-1000) and stored at 4�C.
Sectionswerealsoused for anatomical verificationof the tetrode tracks. ImageswereacquiredusingaZeiss confocalmicroscope (LSM

880 Indimo, Axio Imager 2) with a Plan-Apochromat320/0.8 M27 objective and the ZEN (Zeiss Black 2.3) software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed in Python 3.8 (https://www.python.org/downloads/release/python-3816/) and Python 3.10 (https://www.

python.org/downloads/release/python-31011/), using the Python packages DABEST (Ho et al.63 ), scipy (Virtanen et al.64), numpy

(Harris et al.65), matplotlib (Hunter66), seaborn (Waskom67), pandas (McKinney68), scikit-learn (Pedregosa et al.69), statsmodels (Sea-

bold and Perktold70). Error bars, mean ± S.E.M unless otherwise stated. We used throughout this study a bootstrap-coupled esti-

mation of effect sizes, plotting the data against a mean difference between the left-most condition and one or more conditions on

the right and compare this difference against zero using 5,000 bootstrapped resamples. In these estimation graphics (DABEST plots),

each black dot indicates a mean difference and the associated black ticks depict error bars representing 95% confidence intervals;

the shaded area represents the bootstrapped sampling-error distribution. Bandwidth estimates for the kernel density estimate were

computed using the scikit-learn package. We used the DABEST package to calculate test statistics and p-values and visualize data.

The test statistic is the mean difference and the p-value is the is the probability of observing the effect size (or greater), assuming the

null hypothesis of zero difference is true. Paired permutation tests (or equivalent paired tests) were performed for repeated-measures

analyses and unpaired tests used for independent samples. Data distributions were assumed to be normal, but this was not formally

tested. Our results were replicable across mice and recording days. For the optogenetic interventions, the different closed-loop con-

ditions (DS-sync, SWR-sync, DS-Delay, and SWR-Delay) were experienced in a randomized order across days. In the object recog-

nition tasks, objects and their positions and the order of their replacement were randomized. Neural and behavioral data analyses

were conducted in an identical way regardless of the identity of the experimental condition from which the data were collected,

with the investigator blind to group allocation during analyses. No statistical methods were used to pre-determine sample sizes,

but our sample sizes are similar to or larger than those reported in previous publications. Inclusion criteria for well-isolated single units

were used as published in previous studies and are described in the corresponding subsections of the method details. For the pop-

ulation vector analyses (Figures 3 and S4), each recording session required a minimum of 100 of each type of event (DS1, DS2, SWR)

and a minimum of 20 simultaneously recorded hippocampal principal cells for inclusion.
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Figure S1. Tetrode locations and characterization of dentate spikes, related to Figure 1. 
(A) Triple-(DG-CA3-CA1) tetrode layout schematic. 
(B) Example histology showing tetrode tracks in DG, CA3, and CA1, with color-coded contours of  the 
pyramidal cell layers and the granule cell layer. 
(C) Histogram of  tetrode locations in the dorsal-ventral plane (CA1 tetrodes n=176; DG tetrodes n=244, 
CA3 tetrodes n=92, f rom n=73 sessions, 12 mice). 
(D) Examples of  mean ± SEM dentate spike (DS) local f ield potential (LFP) waveforms f rom individual 
mice.  



   

 

 

(E) Group mean ± SEM DS LFP waveform (n=73 sessions, 12 mice). 
(F) Kernel density estimates (KDEs) and boxplots for DS (lef t) and SWR (right) event durations (based on 
32,215 DS events and 65,370 SWR events, n=73 sessions, 12 mice). 
(G) DS and SWR events occur when mice are asleep or in quiet rest and not when they are active. The 
graph shows KDEs for the probability of  DS (blue) and SWR (orange) occurrence versus active behavior 
(gray) for a range of  movement speeds. Active behavior was determined f rom the theta-to-delta ratio 
(>2.4) f rom the CA1 LFP during open f ield exploration. 
(H) Estimation plot showing that DS and SWR events occur when the theta-to-delta ratio is low compared 
to active behavior. For this analysis, we def ined a minimum activity level (movement speed > 3 cm/s) 
based on the active behavior movement speed distribution (panel F) to include 99% of  the area under the 
curve. We then extracted the theta-to-delta ratio for speeds above this minimum and compared this 
distribution to the theta-to-delta ratio distributions during DSs and SWRs. Upper: raw data points (each 
point shows mean theta-to-delta power during one active behavior session or one sleep session), with the 
gapped lines on the right as mean (gap) ± s.d.  (vertical ends) for each event. Lower: dif ference (Δ) in 
theta-to-delta ratio between active epochs versus DS and SWR epochs computed f rom 5,000 
bootstrapped resamples and with the dif ference-axis origin (dashed line) aligned to active behavior (black 
dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). The test statistic 
is the mean dif ference, shown on the y-axis of  the lower plot. P-values are f rom unpaired permutation 
tests, active versus event, ***P < 0.001. 
(I) Cross-correlogram of  the probability of  DS occurrence with respect to SWRs. Note that there was a 
small increase in the probability of  DS around the time of  a SWR, with more than 90% of  DSs not 
occurring within ± 50 ms of  a SWR. Red dashed lines show peak of  event, gray dashed lines show ± 50 
ms f rom peak. 
(J) As for panel I but for SWR occurrence with respect to DSs. 
  



   

 

  



   

 

 

Figure S2. Dentate spikes activate hippocampal principal cells, related to Figure 1. 
(A) Top: Example spike waveform showing the trough-to-peak measurement for spike width. Scale bar 
100 µV and 0.5 ms. Middle: example auto-correlograms f rom individual DG, CA3 and CA1 principal cells. 
Bottom: example place maps f rom three individual (simultaneously recorded) DG, CA3 and CA1 principal 
cells illustrating the spatial distribution of  spiking activity . The number in the top right corner shows the 
maximum f iring rate of  the cell in its place-f ield. 
(B, C) Trough-to-peak width was used to classify principal cells versus interneurons. (B) Estimation plot 
showing that the trough-to-peak width is narrower in DG principal cells versus CA3 and CA1 principal 
cells. (C) Trough-to-peak width narrower in DG versus CA3 interneurons but is wider in DG versus CA1 
interneurons. Note that the trough-to-peak width for DG principal cells remains wider for DG principal cells 
than DG interneurons. 
(D) The auto-correlogram shape dif fers between principal cells and interneurons in DG, CA3 and CA1. 
Here, we used the Gini index to evaluate the sparsity in the spike probability distribution for each 1 ms bin 
of  the auto-correlogram (between 0 and +50 ms). This distribution was more unequal for principal cells in 
all three regions, hence a higher Gini index; and was more equal for interneurons, hence a lower Gini 
index. 
(E) The mean f iring rate is higher in hippocampal interneurons (iDG, iCA3, iCA1: recorded cells with a 
trough-to-peak width < 0.45 ms) versus hippocampal principal cells. 
(F) DG, CA3 and CA1 principal cells exhibit higher spatial information scores than interneurons in these 
respective regions. 
For B-F estimation plots, Upper: raw data points (each point shows one principal cell); Lower: dif ference 
(Δ) in trough-to-peak width, f iring rate, or spatial information (respectively) in DG versus CA3 and DG 
versus CA1. Other plot details as in Figure S1H. 
(G) Examples of  three individual principal cells’ z-scored f iring rates during DS (blue) and SWR (orange) 
events. The horizontal dashed line shows z-score = 3. 
(H) Percentage of  principal cells active during DS (lef t) versus SWR (right) events, as def ined by crossing 
various z-thresholds. 
(I) Percentage of  signif icantly activated principal cells , as def ined by a z-score > 3 (within ± 20 ms of  the 
event peak, shown at time 0 in G, during DS (lef t) and SWR (right) events. 
(J) Estimation plot showing the ef fect size for the dif ferences in the time point of  maximum neuronal 
spiking activity during DSs and SWRs in DG, CA3, and CA1 principal cells. Note that DG cells reached 
their peak f iring signif icantly before CA1 neurons during DSs; CA3 cells reached their peak f iring 
signif icantly before CA1 neurons during SWRs. Upper: raw data points (each point shows one principal 
cell that was signif icantly active (z > 3) during each event); Lower: dif ference (Δ) in time of  peak activation 
in DG versus CA3 and DG versus CA1. 
(K, L) Corresponding time course of  principal cell instantaneous f iring rate (z-score) during SWR (K) and 
DS (L) events.  
(M, N) Using the time to cross the z-score > 3 threshold, we observed that during DS events, DG principal 
cells increase their f iring activity signif icantly earlier than both CA3 and CA1 principal cells . Panel N is the 
corresponding estimation plot of  the response latency (i.e. when each cell crossed the z > 3 threshold 
relative to the event peak) showing that DG cells are active before CA3 and CA1 principal cells during 
DSs. Upper and lower plots as in panel J. 
(O, P) Estimation plots comparing the overall mean f iring rate of  each principal cell (calculated across the 
entire recording session) to its peri-event f iring rate (calculated as the mean f iring rate ± 5 ms around the 
peak of  the event) during DS (O) and SWR (P) events. Upper: raw data points (each point shows one 
principal cell’s mean rate and peri-event rate) in DG, CA3 and CA1; Lower: dif ference (Δ) in f iring rate 
between mean rate and peri-event rate for DG, CA3 and CA1 separately. Other plot details as in Figure 
S1H. 
For B-F,J,N-P, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
unpaired permutation tests, cell type versus cell type (B-F,J,N); or paired permutation tests, baseline 
(mean rate) versus event (O-P), *P < 0.05, **P < 0.01, ***P < 0.001.  



   

 

 

 
 
Figure S3. Current source density, local field potential profiles, and hippocampal principal cell 
spiking for DS1 and DS2 events, related to Figure 2. 



   

 

 

(A) Examples of  current source density (CSD) prof iles for individual Type 1 (DS1) and Type 2 (DS2) 
dentate spikes (two DS1 examples, two DS2 examples) recorded f rom a 64-channel silicon-probe. Left 
panel: the instantaneous CSD ±150 ms around the event peak. Right panel: the CSD amplitude at each 
depth (based on the mean amplitude f rom –25 to + 25 ms around the event peak). Stratum oriens: ori; 
pyramidal layer: pyr; stratum radiatum: rad; lacunosum moleculare: lm; hippocampal f issure: hf ; outer 
molecular layer: om; middle molecular layer: mm; inner molecular layer: im; granule-cell layer: gr. 
(B) Group mean ± SEM LFP waveforms for DS1 and DS2 events f rom silicon-probe recordings (8 
sessions, 3 mice). 
(C) Examples of  mean ± SEM LFP waveforms for DS1 and DS2 events f rom tetrode recordings in 
individual mice. 
(D) Group mean ± SEM LFP waveforms for DS1 and DS2 events f rom tetrode recordings (73 sessions, 12 
mice) 
(E) Percentage of  principal cells active during DS1 (lef t) versus DS2 (right) events, and as def ined by 
crossing various z-thresholds. 
(F) Percentage of  signif icantly activated principal cells, as def ined by a z-score > 3 (within ± 20 ms of  the 
event peak), during DS1 (lef t) and DS2 (right) events. 
(G-J) Peri-event time histograms (G,H) showing z-scored f iring rates ± 100 ms around the event peak and 
estimation plots (I,J) comparing overall mean f iring rate (calculated across the entire recording session) to 
peri-event f iring rate (calculated as the mean f iring rate ± 5 ms around the peak of  the event) for all 
principal cells during DS1 and DS2 events. DG n=921, CA3 n=388, CA1 n=887 principal cells (12 mice). 
Upper and lower plots as described in Figure S2O-P. 
(K) Percentage of  suppressed principal cells (i.e., cells with a z-score < 0 during the event peak) during 
DS1 and DS2 events. 
(L) Peri-event time histograms showing z-scored f iring rates ± 25 ms around the event peak for the lowest 
quartile of  activated principal cells (i.e., the 25% least activated / suppressed principal cells) during DS1 
events. (DG n=230, CA3 n=97, CA1 n=221 principal cells).  
For I and J, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
paired permutation tests, baseline (mean rate) versus event, ***P < 0.001.  



   

 

 

 
 



   

 

 

Figure S4. Distinct population coactivity structures in DSs versus SWRs, related to Figure 3. 
(A) Toy example illustrating construction of  principal cell × event spiking activity matrices using the 
population f iring vectors nested in 50 ms time windows centered on DSs, SWRs, or duration-matched 
(pre- and post-) control events. The proportion of  active cells in each column vector (B-C) was def ined as 
the proportion of  cells with a non-zero spike count during the individual time window. Logistic regression 
classif iers (D) were trained using 75% of  the population spiking activity vectors and tested with the 
remaining 25% of  vectors, on any given session. We used the event type with the lowest number of  
epochs to determine the training and testing set size and then randomly subsampled the other event 
matrix to generate the same number of  training and testing vectors for each event type, so that the 
classif ier was balanced across event types. Separate matrices and classif iers were utilized for event, pre-
event, and post-event epochs. For all of  the analyses below, the inclusion criterion was that the session 
had to contain a minimum of  20 principal cells and 100 events of  each type. 
(B) Estimation plot showing the mean proportion of  cells active during DS, DS1, DS2 and SWR events 
relative to equivalent duration-matched baseline periods during sleep when none of  these events were 
present. Upper: raw data points (each point shows mean proportion of  active cells in each vector across 
one recording session), with the gapped lines on the right as mean (gap) ± s.d. (vertical ends) for each 
event type. Lower: dif ference (Δ) in proportion of  active cells between baseline epochs versus DS, DS1, 
DS2 and SWR epochs. Note that all events contained more active cells than baseline epochs but there 
was no statistical dif ference between the proportion of  active cells in DS2 versus SWR events. 
(C) Likewise, shown is the proportion of  cells active during Baseline, DS1, DS2 and SWR events split by 
hippocampal subregion. Upper: raw data points (each point shows mean proportion of  active cells by 
subregion), with the gapped lines on the right as mean (gap) ± s.d. (vertical ends) for each subregion. 
Lower: dif ference (Δ) in proportion of  active DG cells versus CA3 and CA1 cells. 
(D) Classif ier performance for SWR versus DS1, SWR versus DS2, and DS1 versus DS2 population 
vectors. Dashed line shows chance performance. 
(E) Estimation plot showing the population vector similarity for all event types compared to their control 
condition in which each event vector was correlated with ‘shuf f led’ population spiking vectors, where the 
cell identity was randomly shuf f led. Upper: raw data points (each point shows mean population similarity 
for one recording session or shuf f led equivalent), with the gapped lines on the right as mean (gap) ± s.d. 
(vertical ends) for each event. Lower: dif ference (Δ) in population similarity between real data for each 
event and its shuf f led equivalent. 
(F) Estimation plot showing population vector similarity for DS and SWR events compared to baseline 
control, as in Figure 3F, but separately for CA (lef t) and DG (right) principal cells. Upper: raw data points 
(each point shows mean population similarity by event type for one recording session), with the gapped 
lines on the right as mean (gap) ± s.d. (vertical ends) for each event type. Lower: dif ference (Δ) in 
population similarity between baseline epochs versus DS and SWR epochs.  
(G) Our results showing signif icantly higher population vector similarity for DS and SWR events versus 
baseline, and for SWR versus DS events (Figure 3F) were recapitulated at the level of  individual mice 
(8/8 mice for DS and SWR events versus baseline, 7/8 mice for SWR versus DS events; p < 0.05 
permutation tests for DS versus baseline, SWR versus baseline, DS versus SWR with n=number of  
population vector pairs per mouse). Black traces show individual mice ± SEM (calculated on the number 
of  population vectors per mouse); red trace shows the group mean ± SEM (calculated on n=8 mice). 
(H) Our results using the Pearson correlation to compare population vector similarity (Figure 3F-G) were 
replicated using the Jaccard similarity measure. Estimation plot showing the population vector similarity 
for all event types compared to baseline epochs. Upper: raw data points (each point shows mean 
population similarity by event type for one recording session), with the gapped lines on the right as mean 
(gap) ± s.d. (vertical ends) for each event type. Lower: dif ference (Δ) in population similarity between 
baseline epochs versus DS, DS1, DS2 and SWR epochs. 
(I) Estimation plot showing mean clustering coef f icients (as Figure 3K) but for CA1-3 cells only (lef t panel) 
or DG cells only (right panel), which also show higher clustering coef f icients for DS events. 
(J) Our results showing signif icantly higher clustering coef f icient for DS and SWR events versus baseline 
and DS versus SWR events (Figure 3K) were recapitulated at the level of  individual mice (8/8 mice for DS 
and SWR events versus baseline, 7/8 mice for SWR versus DS events ; p < 0.05 permutation tests for DS 
versus baseline, SWR versus baseline, DS versus SWR with n=number of  neurons per mouse). Black 
traces show individual mice ± SEM (calculated on the number of  neurons per mouse); red trace shows 
the group mean ± SEM (calculated on n=8 mice). 
(K) Estimation plot showing that the neuronal coactivity graphs nested in both DS 1 and DS2 events 
contained signif icantly stronger triads of  coactive nodes compared to SWR graphs, as indicated by higher 
mean clustering coef f icients. This was notably the case for DS2. 
(L) Single-neuron coactivity strength. As an alternative method to the triadic clustering coef f icient 
parameter, we also show in this estimation plot that SWR and DS events dif fer in neuronal coactivity 
strength and f rom baseline epochs. We def ined the single-neuron coactivity strength as the average 



   

 

 

pairwise coactivity relation of  a given neuron with its population peers. For any two neurons (𝑖, 𝑗), we 

obtained the regression coef f icient 𝛽 f rom a generalized linear model predicting the spike discharge of  

neuron 𝑗 f rom the activity of  neuron 𝑖 while regressing out the activity of  the remaining population.  The 

strength of  neuron 𝑖 is then the average across all the weights 𝛽𝑖𝑗. 

(M) Estimation plot showing population dimensionality required to explain 90% of  the variance in DS and 
SWR events compared to baseline control separately for population vectors containing only CA (lef t) or 
DG (right) principal cells. Upper: raw data points (each point shows mean population dimensionality by 
event type for one recording session), with the gapped lines on the right as mean (gap) ± s.d. (vertical 
ends) for each event type. Lower: dif ference (Δ) in population dimensionality between baseline epochs 
versus DS and SWR epochs. Importantly, considering here DG and CA regions separately for the 
dimensionality analysis bears the caveat that, to comply with our criterion of  at least 20 simultaneously 
recorded principal cells for each recording session, these analyses use far fewer recording days and the 
resulting neuronal population vectors are much smaller (n=17 days, n=25.8±1.0 cells per vector for CA; 
n=15 days, n=25.5±0.9 cells per vector for DG) than the data presented in Figure 3K (n=34 days, 
n=37.2±1.8 cells per vector), which limits the comparison.  
(N) PCA to compare the dimensionality of  SWR versus DS matrices (cell ×  event number), matching the 
number of  events for each event type, determining the number of  components required to explain 70–
95% of  the variance. In each case, the dimensionality was signif icantly higher f or DS versus SWR events 
at α < 0.05 (Wilcoxon test for paired samples, one-tailed). 
(O-P) The number of  components required to explain equivalent amounts of  variance was lower in DS1 
versus SWR and DS2, and higher in DS2 versus SWR events (N); as illustrated by the estimation plot in 
panel O, showing that a lower number of  principal components was required to explain 90% of  the 
variance across the population vectors nested in DS1, compared to SWR and DS2 events. 
For B-F,H-I,K-M,P, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black 
dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are 
f rom paired permutation tests, baseline versus event (B,F,H,I,L,M), event versus pre-event and event 
versus post-event (D), data versus shuf f le (E), event versus event (K,P); or unpaired permutation tests, 
cell type versus cell type (C), *P < 0.05, **P < 0.01, ***P < 0.001.  



   

 

 

 
 
Figure S5. Offline reactivation of theta population coactivity in individual mice, related to Figure 4. 
(A) Raw data examples of  hippocampal principal cells spiking activity during active exploration marked by 
theta oscillations (Lef t) and of f line sleep/rest (Right; example SWRs shown). Scale bars 0.5 mV and 150 
ms (Lef t) or 50 ms (Right). We applied our peer-to-peer coactivity analysis (Figure 3A) to obtain the 
waking patterns of  population coactivity nested in theta cycles during exploration, and the of f line patterns 
of  population coactivity nested in either DS or SWR events during sleep/rest before and af ter exploration. 
With these, we next computed DS and SWR reactivation by measuring the tendency of  the peer-to-peer 
theta f iring associations to reoccur in post-exploration sleep/rest DS (or SWR) events, while controlling for 
prior pre-exploration DS (or SWR) coactivity, using a linear mixed model (Figure 4A). 



   

 

 

(B) SWR reactivation in individual mice (measured by the β coef f icients of  the linear regression that 
predicted post-exploration SWR coactivity f rom waking theta coactivity, controlling for pre-exploration 
SWR coactivity). 
(C) DS reactivation in individual mice (measured by the β coef f icients of  the linear regression that 
predicted post-exploration DS coactivity f rom waking theta coactivity, controlling for pre-exploration DS 
coactivity). 
(D-E) Distribution of  peer-to-peer coactivity values (β coef f icients) for SWRs (D) and DSs (E) in the pre- 
and post-exploration sleep/rest sessions. Signif icance was tested using the Wilcoxon test for matched 
pairs: post > pre for DSs (U=1198580, n=7310, p < 0.001); and for SWRs (U=12839635, n=7310, p < 
0.001). 
(F-G) Estimation plots showing that the neuronal coactivity graphs nested in DSs contained signif icantly 
stronger triads of  coactive nodes compared to SWR graphs, as indicated by higher mean clustering 
coef f icients, during both pre- and post-exploration sleep sessions (F). Also, DSs and SWRs contained 
signif icantly stronger triads of  coactive nodes during post - versus pre-exploration sleep sessions (G). 
(H) Mean DS1 reactivation pooled across mice (lef t panel) and in individual mice (right four panels; 
measured by the β coef f icients of the linear regression that predicted post-exploration DS1 coactivity f rom 
waking theta coactivity, controlling for pre-exploration DS1 coactivity) 
(I) As H but for DS2 reactivation. 
For F and G, the test statistic is the mean dif ference, shown on the y-axis of  each lower plot (black dot, 
mean; black ticks, 95% conf idence interval; f illed curve, sampling -error distribution). P-values are f rom 
paired permutation tests, event versus event (F), pre versus post (G), *P < 0.05, **P < 0.01, ***P < 0.001. 
  



   

 

 

 

 
 
Figure S6. Closed-loop optogenetic suppression of dentate granule cells during DSs, related to 
Figures 5 and 6.  
(A-C) During DS-triggered DG light-delivery for the optogenetic silencing of  DG cells, there was no 
dif ference in the amplitude (A, B) or duration (C) of  DSs in light-on versus light-of f  (control) DS events. 
(D-I) DG light-delivery did not af fect CA1 LFPs (D), ripple duration (E), intra-ripple f requency (F), ripple 
power (G), nor the probability of  ripple occurrence (H-I; 22 recording sessions in 8 mice). 
(J) DS-triggered DG light-delivery signif icantly reduced f iring rates in DG, CA3 and CA1 principal cells 
relative to DSs with no light delivery (Control), in a paired analysis (same cells under both conditions). 
Each panel shows mean ± SEM f iring rate. Average f iring rates across the entire recording session 
(including sleep and exploration epochs) were: DG: 1.4±0.1 Hz, CA3: 1.7±0.3 Hz, CA1: 1.5±0.1 Hz. 
(K) Estimation plot showing the maximum f iring rate (during DS events) in DG, CA3 and CA1 principal 
cells during DS-Sync or Control (DSs with no light delivery), as in panel J. Upper: raw data points (each 



   

 

 

point shows maximum f iring rate), with the gapped lines on the right as mean (gap) ± s.d.  (vertical ends) 
for each event type. Lower: dif ference (Δ) in maximum f iring rates between DS-Sync and no-light control 
condition (paired permutation test in DG: n=216 cells, CA3: n=50 cells, and CA1: n=133 cells f rom n=22 
recording sessions in 8 mice). 
(L) Estimation plot for object preference in a ‘no -laser’ control group of  mice, showing signif icantly more 
time spent investigating the novel object (n=20 test sessions in 5 mice).  
(M-O) In the continuous novel object recognition task, the total time spent exploring the objects (M), the 
number of  laser pulses delivered (N) and the number of  SWRs detected during sleep sessions (O) did not 
dif fer between the DS-delay and DS-sync conditions. 
(P-S) The tone fear task in which mice had 5 tone-shock pairings during conditioning followed by either 
DS-Delayed or DS-Sync stimulation, and then fear memory recall. Mice f roze more during recall than the 
baseline (Q), but this did not dif fer between the DS-Delay and DS-Sync groups (R; n=8 sessions in 4 
mice). Mice received an equivalent number of  laser pulses in the two groups (S). 
(T) In the novel position recognition task, mice in the DS-Delayed and DS-Sync groups received 
equivalent numbers of  laser pulses. 
E-G, M-O, S,T show mean ± SEM. For B,C,I,K,L,Q,R, the test statistic is the mean dif ference, shown on 
the y-axis of  each lower plot (black dot, mean; black ticks, 95% conf idence interval; f illed curve, sampling -
error distribution). P-values are f rom paired permutation tests, Control (no laser) versus DS-Sync 
(B,C,I,K,R), Novel versus Familiar (L), Baseline versus DS-Delay and DS-Sync (Q), *P < 0.05, **P < 0.01, 
***P < 0.001.  



   

 

 

 

 

 

Table S1. Ratio of DG to CA neurons influence on the dimensionality and 

similarity of population firing vectors, related to Figure 3. 

Event Dependent variable Independent variables 
Degrees 

of 

freedom 

r-value p-value 

DS Dimensionality Ratio of  DG:CA neurons 33 0.24 0.18 

DS1 Dimensionality Ratio of  DG:CA neurons 33 0.12 0.51 

DS2 Dimensionality Ratio of  DG:CA neurons 33 0.26 0.14 

SWR Dimensionality Ratio of  DG:CA neurons 33 0.32 0.07 

DS Similarity Ratio of  DG:CA neurons 33 -0.06 0.75 

DS1 Similarity Ratio of  DG:CA neurons 33 -0.13 0.46 

DS2 Similarity Ratio of  DG:CA neurons 33 -0.08 0.66 

SWR Similarity Ratio of  DG:CA neurons 33 -0.39 0.02 

 

 

 

  



   

 

 

 

 

 

Table S2. Linear mixed model analysis for SWR and DS reactivation of waking 

theta coactivity patterns, related to Figure 4. 

Event 
Dependent 

variable 
Independent variables 

No. 
Observation 

SWR Post-exploration 
Theta coactivity 

Pre-exploration 
7310 

SWR Pre-exploration 
Theta coactivity 
Post-exploration 

7310 

DS Post-exploration 
Theta coactivity 
Pre-exploration 

7310 

DS Pre-exploration 
Theta coactivity 
Post-exploration 

7310 

 

Event 
Dependent 

variable 
Independent 

variables 
β 

coefficient 
CI (95%) z Prob. 

SWR Post-exploration Theta coactivity 0.37 [0.32, 0.43] 13.1 P < 0.0001 

  Pre-exploration 0.11 [0.09, 0.13] 9.5 P < 0.0001 

SWR Pre-exploration Theta coactivity 0.20 [0.15, 0.26] 7.0 P < 0.0001 

  Post-exploration 0.11 [0.04, 0.08] 9.5 P < 0.0001 

DS Post-exploration Theta coactivity 0.39 [0.31, 0.46] 9.7 P < 0.0001 

  Pre-exploration 0.25 [0.23, 0.27] 23.3 P < 0.0001 

DS Pre-exploration Theta coactivity 0.24 [0.16, 0.32] 5.8 P < 0.0001 

  Post-exploration 0.27 [0.25, 0.30] 23.3 P < 0.0001 

  



   

 

 

 

 

 

Table S3. Counts of principal cells by session and mouse, related to Figures 1-6. 

 

Figure number / 

panel 

# 

sessions 

# 

mice 

# principal cells (mean ± SEM per mouse) 

   DG CA3 CA1 

Figure. 1F,G 73 12 921 

(76.5±22.2 per mouse) 

388 

(32.3±9.6 per mouse) 

887 

(73.6±17.9 per mouse) 

Figure. 2A-C 8 3 n/a n/a n/a 

Figure. 2E-G 73 12 921 

(76.5±22.2 per mouse) 

388  

(32.3±9.6 per mouse) 

887 

(73.6±17.9 per mouse) 

Figure. 3B-D,F-

G,K,L 

34 8 647 

(85.6±28.9 per mouse)  

169 

(25.6±9.1 per mouse) 

449 

(77.9±23.0 per mouse) 

Figure. 4B-C 9 4 114 

(28.5±7.2 per mouse) 

5 

(1.25±1.1 per mouse) 

232 

(58.0±18.0 per mouse) 

Figure. 5F-G 43 9 548 

(60.9±11.8 per mouse) 

n/a n/a 

Figure. 5I-J 13 3 181 

(60.3±14.0 per mouse) 

n/a n/a 

Figure. 6H (DS) 

Figure. 6H (SWR) 

10 

12 

3 

3 

79 (26.3±10.3 per mouse) 

173 (57.7±15.7 per 

mouse) 

22 (7.3±3.8 per mouse) 

32 (10.7±6.4 per 

mouse) 

73 (24.3±4.0 per mouse) 

68 (22.7±8.1 per mouse) 
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