Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity.

Thomas CW
Guillaumin MCC
McKillop LE
Achermann P
Vyazovskiy VV
Scientific Abstract

Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.

Citation
2020. eLife, 9:e54148
DOI
10.7554/eLife.54148
Related Content
Publication
Wiest C, He S, Duchet B, Pogosyan A, Benjaber M, Denison T, Hasegawa H, Ashkan K, Baig F, Bertaina I, Morgante F, Pereira EA, Torrecillos F, Tan H

2023. Neurobiol Dis, 178:106019.

Publication
Sinclair NC, McDermott HJ, Bulluss KJ, Fallon JB, Perera T, Xu SS, Brown P, Thevathasan W
2018. Ann. Neurol., 83(5): 1027-1031.
Publication
van Rheede JJ, Alagapan S, Denison T, Riva-Posse P, Rozell CJ, Mayberg HS, Waters AC, Sharott A

2024. Transl Psychiatry, 14(1):103.

Publication
Wiest C, Simpson TG, Pogosyan A, Hasegawa H, He S, Plazas FR, Wehmeyer L, Yassine S, Guo X, Shah RS, Merla A, Perera A, Raslan A, O'Keeffe A, Hart MG, Morgante F, Pereira EA, Ashkan K, Tan H

2024. Mov Disord (e-Pub ahead of print).

Publication
Oswal A, Beudel M, Zrinzo L, Limousin P, Hariz M, Foltynie T, Litvak V, Brown P
2016. Brain, 139:1482-96.