Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation.

Stanslaski SR
Afshar P
Cong P
Giftakis J
Stypulkowski P
Carlson D
Linde D
Ullestad D
Avestruz AT
Scientific Abstract

Chronically implantable, closed-loop neuromodulation devices with concurrent sensing and stimulation hold promise for better understanding the nervous system and improving therapies for neurological disease. Concurrent sensing and stimulation are needed to maximize usable neural data, minimize time delays for closed-loop actuation, and investigate the instantaneous response to stimulation. Current systems lack concurrent sensing and stimulation primarily because of stimulation interference to neural signals of interest. While careful design of high performance amplifiers has proved useful to reduce disturbances in the system, stimulation continues to contaminate neural sensing due to biological effects like tissue-electrode impedance mismatch and constraints on stimulation parameters needed to deliver therapy. In this work we describe systematic methods to mitigate the effect of stimulation through a combination of sensing hardware, stimulation parameter selection, and classification algorithms that counter residual stimulation disturbances. To validate these methods we implemented and tested a completely implantable system for over one year in a large animal model of epilepsy. The system proved capable of measuring and detecting seizure activity in the hippocampus both during and after stimulation. Furthermore, we demonstrate an embedded algorithm that actuates neural modulation in response to seizure detection during stimulation, validating the capability to detect bioelectrical markers in the presence of therapy and titrate it appropriately. The capability to detect neural states in the presence of stimulation and optimally titrate therapy is a key innovation required for generalizing closed-loop neural systems for multiple disease states.

Citation

2012.IEEE Trans Neural Syst Rehabil Eng, 20(4):410-21.

Related Content
Publication
Author
Weerasinghe G
Bick C
2021. PLoS Comput. Biol., 17(8):e1009281.
Publication
Author
Baig F
Mostofi A
Green AL
Aziz TZ
Pereira EA

2021. Mov Disord, 36(4):863-873.

Publication
Author
Aziz TZ
Huang Y
Wang S
Timmermann L
Visser-Vandewalle V
Pedrosa D
Green AL
2019. Brain Stimul., 12(4):858-867.
Publication
Author
Morgante F
Ottaway J
Gillbe T
Martin S
Lamb G
Noone T
Nairac Z
Sehgal D
Constandinou TG
Herron J
Aziz TZ
Gillbe I
Green AL
Pereira EA

2022. Exp Neurol, 351:113977.